Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
|
@@ -1,16 +1,15 @@
|
|
| 1 |
-
from fastapi import FastAPI, HTTPException, UploadFile, File
|
| 2 |
from pydantic import BaseModel
|
| 3 |
-
from typing import Optional
|
| 4 |
import torch
|
| 5 |
import librosa
|
| 6 |
import numpy as np
|
| 7 |
import os
|
| 8 |
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
|
| 9 |
-
from librosa.sequence import dtw
|
| 10 |
import tempfile
|
| 11 |
import shutil
|
| 12 |
from dotenv import load_dotenv
|
| 13 |
import uvicorn
|
|
|
|
| 14 |
|
| 15 |
# Load environment variables
|
| 16 |
load_dotenv()
|
|
@@ -22,16 +21,73 @@ class ComparisonResult(BaseModel):
|
|
| 22 |
similarity_score: float
|
| 23 |
interpretation: str
|
| 24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
class QuranRecitationComparer:
|
| 26 |
def __init__(self, model_name="jonatasgrosman/wav2vec2-large-xlsr-53-arabic", token=None):
|
| 27 |
"""Initialize the Quran recitation comparer with a specific Wav2Vec2 model."""
|
| 28 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
| 29 |
|
| 30 |
# Load model and processor once during initialization
|
| 31 |
if token:
|
|
|
|
| 32 |
self.processor = Wav2Vec2Processor.from_pretrained(model_name, use_auth_token=token)
|
| 33 |
self.model = Wav2Vec2ForCTC.from_pretrained(model_name, use_auth_token=token)
|
| 34 |
else:
|
|
|
|
| 35 |
self.processor = Wav2Vec2Processor.from_pretrained(model_name)
|
| 36 |
self.model = Wav2Vec2ForCTC.from_pretrained(model_name)
|
| 37 |
|
|
@@ -40,18 +96,21 @@ class QuranRecitationComparer:
|
|
| 40 |
|
| 41 |
# Cache for embeddings to avoid recomputation
|
| 42 |
self.embedding_cache = {}
|
|
|
|
| 43 |
|
| 44 |
def load_audio(self, file_path, target_sr=16000, trim_silence=True, normalize=True):
|
| 45 |
"""Load and preprocess an audio file."""
|
| 46 |
if not os.path.exists(file_path):
|
| 47 |
raise FileNotFoundError(f"Audio file not found: {file_path}")
|
| 48 |
|
|
|
|
| 49 |
y, sr = librosa.load(file_path, sr=target_sr)
|
| 50 |
|
| 51 |
if normalize:
|
| 52 |
y = librosa.util.normalize(y)
|
| 53 |
|
| 54 |
if trim_silence:
|
|
|
|
| 55 |
y, _ = librosa.effects.trim(y, top_db=30)
|
| 56 |
|
| 57 |
return y
|
|
@@ -74,7 +133,7 @@ class QuranRecitationComparer:
|
|
| 74 |
|
| 75 |
def compute_dtw_distance(self, features1, features2):
|
| 76 |
"""Compute the DTW distance between two sequences of features."""
|
| 77 |
-
D, wp =
|
| 78 |
distance = D[-1, -1]
|
| 79 |
normalized_distance = distance / len(wp)
|
| 80 |
return normalized_distance
|
|
@@ -105,13 +164,16 @@ class QuranRecitationComparer:
|
|
| 105 |
def get_embedding_for_file(self, file_path):
|
| 106 |
"""Get embedding for a file, using cache if available."""
|
| 107 |
if file_path in self.embedding_cache:
|
|
|
|
| 108 |
return self.embedding_cache[file_path]
|
| 109 |
|
|
|
|
| 110 |
audio = self.load_audio(file_path)
|
| 111 |
embedding = self.get_deep_embedding(audio)
|
| 112 |
|
| 113 |
# Store in cache for future use
|
| 114 |
self.embedding_cache[file_path] = embedding
|
|
|
|
| 115 |
|
| 116 |
return embedding
|
| 117 |
|
|
@@ -128,21 +190,26 @@ class QuranRecitationComparer:
|
|
| 128 |
float: Similarity score
|
| 129 |
str: Interpretation of similarity
|
| 130 |
"""
|
|
|
|
| 131 |
# Get embeddings (using cache if available)
|
| 132 |
embedding1 = self.get_embedding_for_file(file_path1)
|
| 133 |
embedding2 = self.get_embedding_for_file(file_path2)
|
| 134 |
|
| 135 |
# Compute DTW distance
|
|
|
|
| 136 |
norm_distance = self.compute_dtw_distance(embedding1.T, embedding2.T)
|
|
|
|
| 137 |
|
| 138 |
# Interpret results
|
| 139 |
interpretation, similarity_score = self.interpret_similarity(norm_distance)
|
|
|
|
| 140 |
|
| 141 |
return similarity_score, interpretation
|
| 142 |
|
| 143 |
def clear_cache(self):
|
| 144 |
"""Clear the embedding cache to free memory."""
|
| 145 |
self.embedding_cache = {}
|
|
|
|
| 146 |
|
| 147 |
# Global variable for the comparer instance
|
| 148 |
comparer = None
|
|
@@ -152,11 +219,15 @@ async def startup_event():
|
|
| 152 |
"""Initialize the model when the application starts."""
|
| 153 |
global comparer
|
| 154 |
print("Initializing model... This may take a moment.")
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
|
| 161 |
@app.get("/")
|
| 162 |
async def root():
|
|
@@ -179,7 +250,9 @@ async def compare_files(
|
|
| 179 |
if not comparer:
|
| 180 |
raise HTTPException(status_code=500, detail="Model not initialized. Please try again later.")
|
| 181 |
|
|
|
|
| 182 |
temp_dir = tempfile.mkdtemp()
|
|
|
|
| 183 |
|
| 184 |
try:
|
| 185 |
# Save uploaded files to temporary directory
|
|
@@ -187,10 +260,14 @@ async def compare_files(
|
|
| 187 |
temp_file2 = os.path.join(temp_dir, file2.filename)
|
| 188 |
|
| 189 |
with open(temp_file1, "wb") as f:
|
| 190 |
-
|
|
|
|
| 191 |
|
| 192 |
with open(temp_file2, "wb") as f:
|
| 193 |
-
|
|
|
|
|
|
|
|
|
|
| 194 |
|
| 195 |
# Compare the files
|
| 196 |
similarity_score, interpretation = comparer.predict(temp_file1, temp_file2)
|
|
@@ -201,10 +278,12 @@ async def compare_files(
|
|
| 201 |
)
|
| 202 |
|
| 203 |
except Exception as e:
|
|
|
|
| 204 |
raise HTTPException(status_code=500, detail=f"Error processing files: {str(e)}")
|
| 205 |
|
| 206 |
finally:
|
| 207 |
# Clean up temporary files
|
|
|
|
| 208 |
shutil.rmtree(temp_dir, ignore_errors=True)
|
| 209 |
|
| 210 |
@app.post("/clear-cache")
|
|
@@ -217,4 +296,4 @@ async def clear_cache():
|
|
| 217 |
return {"message": "Embedding cache cleared successfully"}
|
| 218 |
|
| 219 |
if __name__ == "__main__":
|
| 220 |
-
uvicorn.run("
|
|
|
|
| 1 |
+
from fastapi import FastAPI, HTTPException, UploadFile, File
|
| 2 |
from pydantic import BaseModel
|
|
|
|
| 3 |
import torch
|
| 4 |
import librosa
|
| 5 |
import numpy as np
|
| 6 |
import os
|
| 7 |
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
|
|
|
|
| 8 |
import tempfile
|
| 9 |
import shutil
|
| 10 |
from dotenv import load_dotenv
|
| 11 |
import uvicorn
|
| 12 |
+
import scipy.spatial.distance as distance
|
| 13 |
|
| 14 |
# Load environment variables
|
| 15 |
load_dotenv()
|
|
|
|
| 21 |
similarity_score: float
|
| 22 |
interpretation: str
|
| 23 |
|
| 24 |
+
# Custom implementation of DTW to replace librosa.sequence.dtw
|
| 25 |
+
def custom_dtw(X, Y, metric='euclidean'):
|
| 26 |
+
"""
|
| 27 |
+
Custom Dynamic Time Warping implementation.
|
| 28 |
+
|
| 29 |
+
Args:
|
| 30 |
+
X: First sequence
|
| 31 |
+
Y: Second sequence
|
| 32 |
+
metric: Distance metric ('euclidean' or 'cosine')
|
| 33 |
+
|
| 34 |
+
Returns:
|
| 35 |
+
D: Cost matrix
|
| 36 |
+
wp: Warping path
|
| 37 |
+
"""
|
| 38 |
+
# Get sequence lengths
|
| 39 |
+
n, m = len(X), len(Y)
|
| 40 |
+
|
| 41 |
+
# Initialize cost matrix
|
| 42 |
+
D = np.zeros((n + 1, m + 1))
|
| 43 |
+
D[0, 1:] = np.inf
|
| 44 |
+
D[1:, 0] = np.inf
|
| 45 |
+
D[0, 0] = 0
|
| 46 |
+
|
| 47 |
+
# Fill cost matrix
|
| 48 |
+
for i in range(1, n + 1):
|
| 49 |
+
for j in range(1, m + 1):
|
| 50 |
+
if metric == 'euclidean':
|
| 51 |
+
cost = np.sum((X[i-1] - Y[j-1])**2)
|
| 52 |
+
elif metric == 'cosine':
|
| 53 |
+
cost = 1 - np.dot(X[i-1], Y[j-1]) / (np.linalg.norm(X[i-1]) * np.linalg.norm(Y[j-1]))
|
| 54 |
+
D[i, j] = cost + min(D[i-1, j], D[i, j-1], D[i-1, j-1])
|
| 55 |
+
|
| 56 |
+
# Backtracking
|
| 57 |
+
wp = [(n, m)]
|
| 58 |
+
i, j = n, m
|
| 59 |
+
while i > 0 or j > 0:
|
| 60 |
+
if i == 0:
|
| 61 |
+
j -= 1
|
| 62 |
+
elif j == 0:
|
| 63 |
+
i -= 1
|
| 64 |
+
else:
|
| 65 |
+
min_idx = np.argmin([D[i-1, j-1], D[i-1, j], D[i, j-1]])
|
| 66 |
+
if min_idx == 0:
|
| 67 |
+
i -= 1
|
| 68 |
+
j -= 1
|
| 69 |
+
elif min_idx == 1:
|
| 70 |
+
i -= 1
|
| 71 |
+
else:
|
| 72 |
+
j -= 1
|
| 73 |
+
wp.append((i, j))
|
| 74 |
+
|
| 75 |
+
wp.reverse()
|
| 76 |
+
return D, wp
|
| 77 |
+
|
| 78 |
class QuranRecitationComparer:
|
| 79 |
def __init__(self, model_name="jonatasgrosman/wav2vec2-large-xlsr-53-arabic", token=None):
|
| 80 |
"""Initialize the Quran recitation comparer with a specific Wav2Vec2 model."""
|
| 81 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 82 |
+
print(f"Using device: {self.device}")
|
| 83 |
|
| 84 |
# Load model and processor once during initialization
|
| 85 |
if token:
|
| 86 |
+
print(f"Loading model {model_name} with token...")
|
| 87 |
self.processor = Wav2Vec2Processor.from_pretrained(model_name, use_auth_token=token)
|
| 88 |
self.model = Wav2Vec2ForCTC.from_pretrained(model_name, use_auth_token=token)
|
| 89 |
else:
|
| 90 |
+
print(f"Loading model {model_name} without token...")
|
| 91 |
self.processor = Wav2Vec2Processor.from_pretrained(model_name)
|
| 92 |
self.model = Wav2Vec2ForCTC.from_pretrained(model_name)
|
| 93 |
|
|
|
|
| 96 |
|
| 97 |
# Cache for embeddings to avoid recomputation
|
| 98 |
self.embedding_cache = {}
|
| 99 |
+
print("Model loaded successfully!")
|
| 100 |
|
| 101 |
def load_audio(self, file_path, target_sr=16000, trim_silence=True, normalize=True):
|
| 102 |
"""Load and preprocess an audio file."""
|
| 103 |
if not os.path.exists(file_path):
|
| 104 |
raise FileNotFoundError(f"Audio file not found: {file_path}")
|
| 105 |
|
| 106 |
+
print(f"Loading audio: {file_path}")
|
| 107 |
y, sr = librosa.load(file_path, sr=target_sr)
|
| 108 |
|
| 109 |
if normalize:
|
| 110 |
y = librosa.util.normalize(y)
|
| 111 |
|
| 112 |
if trim_silence:
|
| 113 |
+
# Use librosa.effects.trim which should be available in most versions
|
| 114 |
y, _ = librosa.effects.trim(y, top_db=30)
|
| 115 |
|
| 116 |
return y
|
|
|
|
| 133 |
|
| 134 |
def compute_dtw_distance(self, features1, features2):
|
| 135 |
"""Compute the DTW distance between two sequences of features."""
|
| 136 |
+
D, wp = custom_dtw(X=features1, Y=features2, metric='euclidean')
|
| 137 |
distance = D[-1, -1]
|
| 138 |
normalized_distance = distance / len(wp)
|
| 139 |
return normalized_distance
|
|
|
|
| 164 |
def get_embedding_for_file(self, file_path):
|
| 165 |
"""Get embedding for a file, using cache if available."""
|
| 166 |
if file_path in self.embedding_cache:
|
| 167 |
+
print(f"Using cached embedding for {file_path}")
|
| 168 |
return self.embedding_cache[file_path]
|
| 169 |
|
| 170 |
+
print(f"Computing new embedding for {file_path}")
|
| 171 |
audio = self.load_audio(file_path)
|
| 172 |
embedding = self.get_deep_embedding(audio)
|
| 173 |
|
| 174 |
# Store in cache for future use
|
| 175 |
self.embedding_cache[file_path] = embedding
|
| 176 |
+
print(f"Embedding shape: {embedding.shape}")
|
| 177 |
|
| 178 |
return embedding
|
| 179 |
|
|
|
|
| 190 |
float: Similarity score
|
| 191 |
str: Interpretation of similarity
|
| 192 |
"""
|
| 193 |
+
print(f"Comparing {file_path1} and {file_path2}")
|
| 194 |
# Get embeddings (using cache if available)
|
| 195 |
embedding1 = self.get_embedding_for_file(file_path1)
|
| 196 |
embedding2 = self.get_embedding_for_file(file_path2)
|
| 197 |
|
| 198 |
# Compute DTW distance
|
| 199 |
+
print("Computing DTW distance...")
|
| 200 |
norm_distance = self.compute_dtw_distance(embedding1.T, embedding2.T)
|
| 201 |
+
print(f"Normalized distance: {norm_distance}")
|
| 202 |
|
| 203 |
# Interpret results
|
| 204 |
interpretation, similarity_score = self.interpret_similarity(norm_distance)
|
| 205 |
+
print(f"Similarity score: {similarity_score}, Interpretation: {interpretation}")
|
| 206 |
|
| 207 |
return similarity_score, interpretation
|
| 208 |
|
| 209 |
def clear_cache(self):
|
| 210 |
"""Clear the embedding cache to free memory."""
|
| 211 |
self.embedding_cache = {}
|
| 212 |
+
print("Embedding cache cleared")
|
| 213 |
|
| 214 |
# Global variable for the comparer instance
|
| 215 |
comparer = None
|
|
|
|
| 219 |
"""Initialize the model when the application starts."""
|
| 220 |
global comparer
|
| 221 |
print("Initializing model... This may take a moment.")
|
| 222 |
+
try:
|
| 223 |
+
comparer = QuranRecitationComparer(
|
| 224 |
+
model_name="jonatasgrosman/wav2vec2-large-xlsr-53-arabic",
|
| 225 |
+
token=HF_TOKEN
|
| 226 |
+
)
|
| 227 |
+
print("Model initialized and ready for predictions!")
|
| 228 |
+
except Exception as e:
|
| 229 |
+
print(f"Error initializing model: {str(e)}")
|
| 230 |
+
raise
|
| 231 |
|
| 232 |
@app.get("/")
|
| 233 |
async def root():
|
|
|
|
| 250 |
if not comparer:
|
| 251 |
raise HTTPException(status_code=500, detail="Model not initialized. Please try again later.")
|
| 252 |
|
| 253 |
+
print(f"Received files: {file1.filename} and {file2.filename}")
|
| 254 |
temp_dir = tempfile.mkdtemp()
|
| 255 |
+
print(f"Created temporary directory: {temp_dir}")
|
| 256 |
|
| 257 |
try:
|
| 258 |
# Save uploaded files to temporary directory
|
|
|
|
| 260 |
temp_file2 = os.path.join(temp_dir, file2.filename)
|
| 261 |
|
| 262 |
with open(temp_file1, "wb") as f:
|
| 263 |
+
content = await file1.read()
|
| 264 |
+
f.write(content)
|
| 265 |
|
| 266 |
with open(temp_file2, "wb") as f:
|
| 267 |
+
content = await file2.read()
|
| 268 |
+
f.write(content)
|
| 269 |
+
|
| 270 |
+
print(f"Files saved to: {temp_file1} and {temp_file2}")
|
| 271 |
|
| 272 |
# Compare the files
|
| 273 |
similarity_score, interpretation = comparer.predict(temp_file1, temp_file2)
|
|
|
|
| 278 |
)
|
| 279 |
|
| 280 |
except Exception as e:
|
| 281 |
+
print(f"Error processing files: {str(e)}")
|
| 282 |
raise HTTPException(status_code=500, detail=f"Error processing files: {str(e)}")
|
| 283 |
|
| 284 |
finally:
|
| 285 |
# Clean up temporary files
|
| 286 |
+
print(f"Cleaning up temporary directory: {temp_dir}")
|
| 287 |
shutil.rmtree(temp_dir, ignore_errors=True)
|
| 288 |
|
| 289 |
@app.post("/clear-cache")
|
|
|
|
| 296 |
return {"message": "Embedding cache cleared successfully"}
|
| 297 |
|
| 298 |
if __name__ == "__main__":
|
| 299 |
+
uvicorn.run("main:app", host="0.0.0.0", port=7860, log_level="info")
|