Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
|
@@ -1,24 +1,36 @@
|
|
| 1 |
-
import
|
|
|
|
|
|
|
| 2 |
import torch
|
| 3 |
import librosa
|
| 4 |
import numpy as np
|
| 5 |
-
import
|
| 6 |
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
|
| 7 |
from librosa.sequence import dtw
|
| 8 |
-
|
| 9 |
-
from fastapi.responses import JSONResponse
|
| 10 |
import shutil
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
-
# Define the QuranRecitationComparer class as provided
|
| 13 |
class QuranRecitationComparer:
|
| 14 |
-
def __init__(self, model_name="jonatasgrosman/wav2vec2-large-xlsr-53-arabic",
|
| 15 |
"""Initialize the Quran recitation comparer with a specific Wav2Vec2 model."""
|
| 16 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 17 |
|
| 18 |
# Load model and processor once during initialization
|
| 19 |
-
if
|
| 20 |
-
self.processor = Wav2Vec2Processor.from_pretrained(model_name, token
|
| 21 |
-
self.model = Wav2Vec2ForCTC.from_pretrained(model_name, token
|
| 22 |
else:
|
| 23 |
self.processor = Wav2Vec2Processor.from_pretrained(model_name)
|
| 24 |
self.model = Wav2Vec2ForCTC.from_pretrained(model_name)
|
|
@@ -107,77 +119,102 @@ class QuranRecitationComparer:
|
|
| 107 |
"""
|
| 108 |
Predict the similarity between two audio files.
|
| 109 |
This method can be called repeatedly without reloading the model.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
"""
|
| 111 |
# Get embeddings (using cache if available)
|
| 112 |
embedding1 = self.get_embedding_for_file(file_path1)
|
| 113 |
embedding2 = self.get_embedding_for_file(file_path2)
|
| 114 |
|
| 115 |
-
# Compute DTW distance
|
| 116 |
norm_distance = self.compute_dtw_distance(embedding1.T, embedding2.T)
|
| 117 |
|
| 118 |
# Interpret results
|
| 119 |
interpretation, similarity_score = self.interpret_similarity(norm_distance)
|
| 120 |
|
| 121 |
-
print(f"Similarity Score: {similarity_score:.1f}/100")
|
| 122 |
-
print(f"Interpretation: {interpretation}")
|
| 123 |
-
|
| 124 |
return similarity_score, interpretation
|
| 125 |
|
| 126 |
def clear_cache(self):
|
| 127 |
"""Clear the embedding cache to free memory."""
|
| 128 |
self.embedding_cache = {}
|
| 129 |
|
| 130 |
-
#
|
| 131 |
-
app = FastAPI(
|
| 132 |
-
title="Quran Recitation Comparison API",
|
| 133 |
-
description="API for comparing similarity between Quran recitations",
|
| 134 |
-
version="1.0.0"
|
| 135 |
-
)
|
| 136 |
-
|
| 137 |
-
# Global instance of the comparer
|
| 138 |
comparer = None
|
| 139 |
|
| 140 |
@app.on_event("startup")
|
| 141 |
async def startup_event():
|
|
|
|
| 142 |
global comparer
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
|
|
|
|
|
|
| 147 |
|
| 148 |
-
# Root endpoint
|
| 149 |
@app.get("/")
|
| 150 |
async def root():
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
@app.post("/compare")
|
| 155 |
-
async def
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 159 |
try:
|
| 160 |
-
# Save
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
with
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 171 |
# Clean up temporary files
|
| 172 |
-
|
| 173 |
-
os.remove(file_path2)
|
| 174 |
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
|
| 180 |
-
# Run the application with uvicorn if this module is executed directly.
|
| 181 |
if __name__ == "__main__":
|
| 182 |
-
|
| 183 |
-
uvicorn.run("main:app", host="0.0.0.0", port=7860, reload=False)
|
|
|
|
| 1 |
+
from fastapi import FastAPI, HTTPException, UploadFile, File, Form
|
| 2 |
+
from pydantic import BaseModel
|
| 3 |
+
from typing import Optional
|
| 4 |
import torch
|
| 5 |
import librosa
|
| 6 |
import numpy as np
|
| 7 |
+
import os
|
| 8 |
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
|
| 9 |
from librosa.sequence import dtw
|
| 10 |
+
import tempfile
|
|
|
|
| 11 |
import shutil
|
| 12 |
+
from dotenv import load_dotenv
|
| 13 |
+
import uvicorn
|
| 14 |
+
|
| 15 |
+
# Load environment variables
|
| 16 |
+
load_dotenv()
|
| 17 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 18 |
+
|
| 19 |
+
app = FastAPI(title="Quran Recitation Comparer API")
|
| 20 |
+
|
| 21 |
+
class ComparisonResult(BaseModel):
|
| 22 |
+
similarity_score: float
|
| 23 |
+
interpretation: str
|
| 24 |
|
|
|
|
| 25 |
class QuranRecitationComparer:
|
| 26 |
+
def __init__(self, model_name="jonatasgrosman/wav2vec2-large-xlsr-53-arabic", token=None):
|
| 27 |
"""Initialize the Quran recitation comparer with a specific Wav2Vec2 model."""
|
| 28 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 29 |
|
| 30 |
# Load model and processor once during initialization
|
| 31 |
+
if token:
|
| 32 |
+
self.processor = Wav2Vec2Processor.from_pretrained(model_name, use_auth_token=token)
|
| 33 |
+
self.model = Wav2Vec2ForCTC.from_pretrained(model_name, use_auth_token=token)
|
| 34 |
else:
|
| 35 |
self.processor = Wav2Vec2Processor.from_pretrained(model_name)
|
| 36 |
self.model = Wav2Vec2ForCTC.from_pretrained(model_name)
|
|
|
|
| 119 |
"""
|
| 120 |
Predict the similarity between two audio files.
|
| 121 |
This method can be called repeatedly without reloading the model.
|
| 122 |
+
|
| 123 |
+
Args:
|
| 124 |
+
file_path1 (str): Path to first audio file
|
| 125 |
+
file_path2 (str): Path to second audio file
|
| 126 |
+
|
| 127 |
+
Returns:
|
| 128 |
+
float: Similarity score
|
| 129 |
+
str: Interpretation of similarity
|
| 130 |
"""
|
| 131 |
# Get embeddings (using cache if available)
|
| 132 |
embedding1 = self.get_embedding_for_file(file_path1)
|
| 133 |
embedding2 = self.get_embedding_for_file(file_path2)
|
| 134 |
|
| 135 |
+
# Compute DTW distance
|
| 136 |
norm_distance = self.compute_dtw_distance(embedding1.T, embedding2.T)
|
| 137 |
|
| 138 |
# Interpret results
|
| 139 |
interpretation, similarity_score = self.interpret_similarity(norm_distance)
|
| 140 |
|
|
|
|
|
|
|
|
|
|
| 141 |
return similarity_score, interpretation
|
| 142 |
|
| 143 |
def clear_cache(self):
|
| 144 |
"""Clear the embedding cache to free memory."""
|
| 145 |
self.embedding_cache = {}
|
| 146 |
|
| 147 |
+
# Global variable for the comparer instance
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
comparer = None
|
| 149 |
|
| 150 |
@app.on_event("startup")
|
| 151 |
async def startup_event():
|
| 152 |
+
"""Initialize the model when the application starts."""
|
| 153 |
global comparer
|
| 154 |
+
print("Initializing model... This may take a moment.")
|
| 155 |
+
comparer = QuranRecitationComparer(
|
| 156 |
+
model_name="jonatasgrosman/wav2vec2-large-xlsr-53-arabic",
|
| 157 |
+
token=HF_TOKEN
|
| 158 |
+
)
|
| 159 |
+
print("Model initialized and ready for predictions!")
|
| 160 |
|
|
|
|
| 161 |
@app.get("/")
|
| 162 |
async def root():
|
| 163 |
+
"""Root endpoint to check if the API is running."""
|
| 164 |
+
return {"message": "Quran Recitation Comparer API is running", "status": "active"}
|
| 165 |
+
|
| 166 |
+
@app.post("/compare", response_model=ComparisonResult)
|
| 167 |
+
async def compare_files(
|
| 168 |
+
file1: UploadFile = File(...),
|
| 169 |
+
file2: UploadFile = File(...)
|
| 170 |
+
):
|
| 171 |
+
"""
|
| 172 |
+
Compare two audio files and return similarity metrics.
|
| 173 |
+
|
| 174 |
+
- **file1**: First audio file (MP3, WAV, etc.)
|
| 175 |
+
- **file2**: Second audio file (MP3, WAV, etc.)
|
| 176 |
+
|
| 177 |
+
Returns similarity score and interpretation.
|
| 178 |
+
"""
|
| 179 |
+
if not comparer:
|
| 180 |
+
raise HTTPException(status_code=500, detail="Model not initialized. Please try again later.")
|
| 181 |
+
|
| 182 |
+
temp_dir = tempfile.mkdtemp()
|
| 183 |
+
|
| 184 |
try:
|
| 185 |
+
# Save uploaded files to temporary directory
|
| 186 |
+
temp_file1 = os.path.join(temp_dir, file1.filename)
|
| 187 |
+
temp_file2 = os.path.join(temp_dir, file2.filename)
|
| 188 |
+
|
| 189 |
+
with open(temp_file1, "wb") as f:
|
| 190 |
+
shutil.copyfileobj(file1.file, f)
|
| 191 |
+
|
| 192 |
+
with open(temp_file2, "wb") as f:
|
| 193 |
+
shutil.copyfileobj(file2.file, f)
|
| 194 |
+
|
| 195 |
+
# Compare the files
|
| 196 |
+
similarity_score, interpretation = comparer.predict(temp_file1, temp_file2)
|
| 197 |
+
|
| 198 |
+
return ComparisonResult(
|
| 199 |
+
similarity_score=similarity_score,
|
| 200 |
+
interpretation=interpretation
|
| 201 |
+
)
|
| 202 |
+
|
| 203 |
+
except Exception as e:
|
| 204 |
+
raise HTTPException(status_code=500, detail=f"Error processing files: {str(e)}")
|
| 205 |
+
|
| 206 |
+
finally:
|
| 207 |
# Clean up temporary files
|
| 208 |
+
shutil.rmtree(temp_dir, ignore_errors=True)
|
|
|
|
| 209 |
|
| 210 |
+
@app.post("/clear-cache")
|
| 211 |
+
async def clear_cache():
|
| 212 |
+
"""Clear the embedding cache to free memory."""
|
| 213 |
+
if not comparer:
|
| 214 |
+
raise HTTPException(status_code=500, detail="Model not initialized.")
|
| 215 |
+
|
| 216 |
+
comparer.clear_cache()
|
| 217 |
+
return {"message": "Embedding cache cleared successfully"}
|
| 218 |
|
|
|
|
| 219 |
if __name__ == "__main__":
|
| 220 |
+
uvicorn.run("app:app", host="0.0.0.0", port=8000, reload=True)
|
|
|