chinesesummary / fengshen /examples /summary /randeng_t5_784M_summary.sh
HaloMaster's picture
add fengshen
50f0fbb
#!/bin/bash
#SBATCH --job-name=randeng_t5_77M_summary
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=2
#SBATCH --gres=gpu:2 # number of gpus
#SBATCH --cpus-per-task=30
#SBATCH -o %x-%j.log
set -x -e
echo "START TIME: $(date)"
MODEL_NAME=randeng_t5_784M_summary
MICRO_BATCH_SIZE=8
ROOT_DIR=/cognitive_comp/dongxiaoqun/finetune/${MODEL_NAME}
if [ ! -d ${ROOT_DIR} ];then
mkdir ${ROOT_DIR}
echo ${ROOT_DIR} created!!!!!!!!!!!!!!
else
echo ${ROOT_DIR} exist!!!!!!!!!!!!!!!
fi
ZERO_STAGE=1
config_json="${ROOT_DIR}/ds_config.${MODEL_NAME}.json"
# Deepspeed figures out GAS dynamically from dynamic GBS via set_train_batch_size()
cat <<EOT > $config_json
{
"train_micro_batch_size_per_gpu": ${MICRO_BATCH_SIZE},
"steps_per_print": 100,
"gradient_clipping": 1.0,
"zero_optimization": {
"stage": $ZERO_STAGE,
"contiguous_gradients": false,
"overlap_comm": true,
"reduce_scatter": true,
"reduce_bucket_size": 50000000,
"allgather_bucket_size": 500000000
},
"optimizer": {
"type": "Adam",
"params": {
"lr": 1e-4,
"weight_decay": 1e-2
}
},
"scheduler": {
"params": {
"warmup_max_lr": 1e-04,
"warmup_min_lr": 1e-05,
"total_num_steps": 60000,
"warmup_num_steps" : 500
},
"type": "WarmupDecayLR"
},
"zero_allow_untested_optimizer": false,
"fp16": {
"enabled": true,
"loss_scale": 0,
"loss_scale_window": 1000,
"hysteresis": 2,
"min_loss_scale": 1
},
"activation_checkpointing": {
"partition_activations": false,
"contiguous_memory_optimization": false
},
"wall_clock_breakdown": false
}
EOT
export PL_DEEPSPEED_CONFIG_PATH=$config_json
export TORCH_EXTENSIONS_DIR=/cognitive_comp/dongxiaoqun/torch_extendsions
# export MASTER_PORT=$[RANDOM%10000+30000]
# export PL_FAULT_TOLERANT_TRAINING=1
TRAINER_ARGS="
--max_epochs 1 \
--gpus 1 \
--num_nodes 1 \
--strategy deepspeed_stage_${ZERO_STAGE} \
--default_root_dir $ROOT_DIR \
--dirpath $ROOT_DIR/ckpt \
--save_top_k 3 \
--monitor val_loss \
--mode min \
--save_last \
--every_n_train_steps 0 \
--val_check_interval 0.1 \
"
prompt="summary:"
DATA_ARGS="
--datasets_name lcsts \
--num_workers 30 \
--train_batchsize $MICRO_BATCH_SIZE \
--val_batchsize $MICRO_BATCH_SIZE \
--test_batchsize $MICRO_BATCH_SIZE \
--max_enc_length 128 \
--max_dec_length 64 \
--val_datasets_field val \
--prompt $prompt \
"
# --prompt $prompt \
MODEL_ARGS="
--pretrained_model_path /cognitive_comp/ganruyi/experiments/randeng_t5_large_v2/ckpt/hf_pretrained_epoch0_step732500 \
--output_save_path $ROOT_DIR/randeng_t5_784M_predict_lcsts.json \
"
SCRIPTS_PATH=/cognitive_comp/dongxiaoqun/debug/Fengshenbang-LM/fengshen/examples/summary/seq2seq_summary.py
SINGULARITY_PATH=/cognitive_comp/ganruyi/pytorch21_06_py3_docker_image_v2.sif
export CMD=" \
$SCRIPTS_PATH \
$TRAINER_ARGS \
$MODEL_ARGS \
$DATA_ARGS \
"
echo $CMD
source activate
conda activate torchnew
srun --nodes=1 --ntasks-per-node=1 --gres=gpu:1 --cpus-per-task=30 -o ${MODEL_NAME}-%J.log --jobid=229668 bash -c 'python3 $SCRIPT_PATH $CMD'
# source activate base
# python $CMD
# srun --jobid=229668 --nodes=1 --gres=gpu:1 --ntasks-per-node=1 --cpus-per-task=30 -e ${ROOT_DIR}/${MODEL_NAME}-%j.err -o ${ROOT_DIR}/${MODEL_NAME}-%j.log singularity exec --nv -B /cognitive_comp/:/cognitive_comp/ $SINGULARITY_PATH bash -c '/home/ganruyi/anaconda3/bin/python $CMD'
# srun python $CMD
# srun singularity exec --nv -B /cognitive_comp/:/cognitive_comp/ $SINGULARITY_PATH bash -c '/home/ganruyi/anaconda3/bin/python $CMD'