File size: 3,668 Bytes
50f0fbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
#!/bin/bash
#SBATCH --job-name=randeng_t5_77M_summary
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=2
#SBATCH --gres=gpu:2               # number of gpus
#SBATCH --cpus-per-task=30
#SBATCH -o %x-%j.log

set -x -e

echo "START TIME: $(date)"
MODEL_NAME=randeng_t5_784M_summary
MICRO_BATCH_SIZE=8
ROOT_DIR=/cognitive_comp/dongxiaoqun/finetune/${MODEL_NAME}
if [ ! -d ${ROOT_DIR} ];then
  mkdir ${ROOT_DIR}
  echo ${ROOT_DIR} created!!!!!!!!!!!!!!
else
  echo ${ROOT_DIR} exist!!!!!!!!!!!!!!!
fi

ZERO_STAGE=1

config_json="${ROOT_DIR}/ds_config.${MODEL_NAME}.json"

# Deepspeed figures out GAS dynamically from dynamic GBS via set_train_batch_size()
cat <<EOT > $config_json
{
  "train_micro_batch_size_per_gpu": ${MICRO_BATCH_SIZE},
  "steps_per_print": 100,
  "gradient_clipping": 1.0,
  "zero_optimization": {
    "stage": $ZERO_STAGE,
    "contiguous_gradients": false,
    "overlap_comm": true,
    "reduce_scatter": true,
    "reduce_bucket_size": 50000000,
    "allgather_bucket_size": 500000000
  },
  "optimizer": {
    "type": "Adam",
    "params": {
      "lr": 1e-4,
      "weight_decay": 1e-2
    }
  },
  "scheduler": {
    "params": {
      "warmup_max_lr": 1e-04,
      "warmup_min_lr": 1e-05,
      "total_num_steps": 60000,
      "warmup_num_steps" : 500
    },
    "type": "WarmupDecayLR"  
  },
  "zero_allow_untested_optimizer": false,
  "fp16": {
    "enabled": true,
    "loss_scale": 0,
    "loss_scale_window": 1000,
    "hysteresis": 2,
    "min_loss_scale": 1
  },
  "activation_checkpointing": {
    "partition_activations": false,
    "contiguous_memory_optimization": false
  },
  "wall_clock_breakdown": false
}
EOT

export PL_DEEPSPEED_CONFIG_PATH=$config_json
export TORCH_EXTENSIONS_DIR=/cognitive_comp/dongxiaoqun/torch_extendsions
# export MASTER_PORT=$[RANDOM%10000+30000]
# export PL_FAULT_TOLERANT_TRAINING=1

TRAINER_ARGS="
    --max_epochs 1 \
    --gpus 1 \
    --num_nodes 1 \
    --strategy deepspeed_stage_${ZERO_STAGE} \
    --default_root_dir $ROOT_DIR \
    --dirpath $ROOT_DIR/ckpt \
    --save_top_k 3 \
    --monitor val_loss \
    --mode min \
    --save_last \
    --every_n_train_steps 0 \
    --val_check_interval 0.1 \
"

prompt="summary:"
DATA_ARGS="
    --datasets_name lcsts \
    --num_workers 30 \
    --train_batchsize $MICRO_BATCH_SIZE \
    --val_batchsize $MICRO_BATCH_SIZE \
    --test_batchsize $MICRO_BATCH_SIZE \
    --max_enc_length 128 \
    --max_dec_length 64 \
    --val_datasets_field val \
    --prompt $prompt \
"
# --prompt $prompt \
MODEL_ARGS="
    --pretrained_model_path /cognitive_comp/ganruyi/experiments/randeng_t5_large_v2/ckpt/hf_pretrained_epoch0_step732500 \
    --output_save_path $ROOT_DIR/randeng_t5_784M_predict_lcsts.json \
"

SCRIPTS_PATH=/cognitive_comp/dongxiaoqun/debug/Fengshenbang-LM/fengshen/examples/summary/seq2seq_summary.py
SINGULARITY_PATH=/cognitive_comp/ganruyi/pytorch21_06_py3_docker_image_v2.sif

export CMD=" \
    $SCRIPTS_PATH \
    $TRAINER_ARGS \
    $MODEL_ARGS \
    $DATA_ARGS \
    "
echo $CMD

source activate
conda activate torchnew
srun --nodes=1 --ntasks-per-node=1 --gres=gpu:1 --cpus-per-task=30 -o ${MODEL_NAME}-%J.log --jobid=229668 bash -c 'python3 $SCRIPT_PATH $CMD'
# source activate base
# python $CMD

# srun --jobid=229668 --nodes=1 --gres=gpu:1 --ntasks-per-node=1 --cpus-per-task=30 -e ${ROOT_DIR}/${MODEL_NAME}-%j.err -o ${ROOT_DIR}/${MODEL_NAME}-%j.log singularity exec --nv -B /cognitive_comp/:/cognitive_comp/ $SINGULARITY_PATH bash -c '/home/ganruyi/anaconda3/bin/python $CMD'

# srun python $CMD
# srun singularity exec --nv -B /cognitive_comp/:/cognitive_comp/ $SINGULARITY_PATH bash -c '/home/ganruyi/anaconda3/bin/python $CMD'