Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -869,7 +869,7 @@ with ui.navset_card_tab(id="tab"):
|
|
869 |
import matplotlib as mpl
|
870 |
@output(suspend_when_hidden=True)
|
871 |
@render.plot(output_id="plot_macro_output")
|
872 |
-
def
|
873 |
#ds = load_dataset('Hack90/virus_tiny')
|
874 |
df = pd.read_parquet('virus_ds.parquet')
|
875 |
df = df[df['Organism_Name'].isin(input.virus_selector())]
|
@@ -893,7 +893,7 @@ with ui.navset_card_tab(id="tab"):
|
|
893 |
filtered_df = df.groupby('Organism_Name').apply(filter_and_select).reset_index(drop=True)
|
894 |
fig = plot_persistence_homology(filtered_df['Sequence'], filtered_df['Organism_Name'])
|
895 |
return fig
|
896 |
-
|
897 |
# with ui.nav_panel("Viral Model"):
|
898 |
# gr.load("models/Hack90/virus_pythia_31_1024").launch()
|
899 |
|
@@ -915,7 +915,7 @@ with ui.navset_card_tab(id="tab"):
|
|
915 |
import matplotlib as mpl
|
916 |
@output(suspend_when_hidden=True)
|
917 |
@render.plot(output_id="plot_micro_output")
|
918 |
-
def
|
919 |
df = pd.read_csv('kmers.csv')
|
920 |
k = input.kmer()
|
921 |
top_k = input.top_k()
|
@@ -940,7 +940,7 @@ with ui.navset_card_tab(id="tab"):
|
|
940 |
ax.set_ylabel("Percentage")
|
941 |
ax.set_xticklabels(df['kmer'], rotation=90)
|
942 |
return fig
|
943 |
-
ui.output_plot("plot_micro_output")
|
944 |
# with ui.nav_panel("Viral Model Training"):
|
945 |
# ui.page_opts(fillable=True)
|
946 |
# ui.panel_title("Does context size matter for a nucleotide model?")
|
|
|
869 |
import matplotlib as mpl
|
870 |
@output(suspend_when_hidden=True)
|
871 |
@render.plot(output_id="plot_macro_output")
|
872 |
+
def plot_macro():
|
873 |
#ds = load_dataset('Hack90/virus_tiny')
|
874 |
df = pd.read_parquet('virus_ds.parquet')
|
875 |
df = df[df['Organism_Name'].isin(input.virus_selector())]
|
|
|
893 |
filtered_df = df.groupby('Organism_Name').apply(filter_and_select).reset_index(drop=True)
|
894 |
fig = plot_persistence_homology(filtered_df['Sequence'], filtered_df['Organism_Name'])
|
895 |
return fig
|
896 |
+
# ui.output_plot("plot_macro_output")
|
897 |
# with ui.nav_panel("Viral Model"):
|
898 |
# gr.load("models/Hack90/virus_pythia_31_1024").launch()
|
899 |
|
|
|
915 |
import matplotlib as mpl
|
916 |
@output(suspend_when_hidden=True)
|
917 |
@render.plot(output_id="plot_micro_output")
|
918 |
+
def plot_micro():
|
919 |
df = pd.read_csv('kmers.csv')
|
920 |
k = input.kmer()
|
921 |
top_k = input.top_k()
|
|
|
940 |
ax.set_ylabel("Percentage")
|
941 |
ax.set_xticklabels(df['kmer'], rotation=90)
|
942 |
return fig
|
943 |
+
#ui.output_plot("plot_micro_output")
|
944 |
# with ui.nav_panel("Viral Model Training"):
|
945 |
# ui.page_opts(fillable=True)
|
946 |
# ui.panel_title("Does context size matter for a nucleotide model?")
|