Spaces:
Sleeping
Sleeping
import numpy as np | |
import torch | |
from sparsification.glmBasedSparsification import compute_feature_selection_and_assignment | |
def compute_sldd_feature_selection_and_assignment(model, train_loader, test_loader, log_folder, num_classes, seed, | |
per_class=5, select_features=50): | |
feature_sel, sparse_matrices, biases, mean, std = compute_feature_selection_and_assignment(model, train_loader, | |
test_loader, | |
log_folder, num_classes, | |
seed, select_features=select_features) | |
weight_sparse, bias_sparse = get_sparsified_weights_for_factor(sparse_matrices,biases, | |
per_class) # Last one in regularisation path has none | |
return feature_sel, weight_sparse, bias_sparse, mean, std | |
def get_sparsified_weights_for_factor(sparse_layer,biases,keep_per_class, drop_rate=0.5): | |
nonzero_entries = [torch.sum(torch.count_nonzero(sparse_layer[i])) for i in range(len(sparse_layer))] | |
mean_sparsity = np.array([nonzero_entries[i] / sparse_layer[i].shape[0] for i in range(len(sparse_layer))]) | |
factor =keep_per_class / drop_rate | |
# Get layer with desired sparsity | |
sparse_enough = mean_sparsity <= factor | |
sel_idx = np.argmax(sparse_enough * mean_sparsity) | |
if sel_idx == 0 and np.sum(mean_sparsity) > 1: # sometimes first one is odd | |
sparse_enough[0] = False | |
sel_idx = np.argmax(sparse_enough * mean_sparsity) | |
selected_weight = sparse_layer[sel_idx] | |
selected_bias = biases[sel_idx] | |
# only keep 5 per class on average | |
weight_5_per_matrix = set_lowest_percent_to_zero(selected_weight,5) | |
return weight_5_per_matrix,selected_bias | |
def set_lowest_percent_to_zero(matrix, keep_per): | |
nonzero_indices = torch.nonzero(matrix) | |
values = torch.tensor([matrix[x[0], x[1]] for x in nonzero_indices]) | |
sorted_indices = torch.argsort(torch.abs(values)) | |
total_allowed = int(matrix.shape[0] * keep_per) | |
sorted_indices = sorted_indices[:-total_allowed] | |
nonzero_indices_to_zero = [nonzero_indices[x] for x in sorted_indices] | |
for to_zero in nonzero_indices_to_zero: | |
matrix[to_zero[0], to_zero[1]] = 0 | |
return matrix |