Spaces:
Running
Running
import torch | |
from torch import nn | |
from transformers.models.paligemma.modeling_paligemma import PaliGemmaForConditionalGeneration, PaliGemmaPreTrainedModel | |
class BiPaliLast(PaliGemmaPreTrainedModel): | |
def __init__(self, config): | |
super(BiPaliLast, self).__init__(config=config) | |
self.model: PaliGemmaForConditionalGeneration = PaliGemmaForConditionalGeneration(config) | |
self.pooling_strategy = "last" | |
self.main_input_name = "doc_input_ids" | |
def forward(self, *args, **kwargs): | |
""" | |
Forward pass through Llama and the linear layer for dimensionality reduction | |
Args: | |
- input_ids (torch.LongTensor): The input tokens tensor. | |
- attention_mask (torch.LongTensor): The attention mask tensor. | |
Returns: | |
- torch.Tensor: Embeddings of shape (batch_size, num_tokens, dim) | |
""" | |
outputs = self.model(*args, output_hidden_states=True, **kwargs) | |
last_hidden_states = outputs.hidden_states[-1] # (batch_size, sequence_length, hidden_size) | |
# pooling - last token | |
proj = last_hidden_states[:, -1, :] | |
# normalize l2 norm | |
proj = proj / proj.norm(dim=-1, keepdim=True) | |
return proj | |
class BiPaliMean(PaliGemmaPreTrainedModel): | |
def __init__(self, config): | |
super(BiPaliMean, self).__init__(config=config) | |
self.model: PaliGemmaForConditionalGeneration = PaliGemmaForConditionalGeneration(config) | |
self.pooling_strategy = "mean" | |
self.main_input_name = "doc_input_ids" | |
def forward(self, *args, **kwargs): | |
""" | |
Forward pass through Llama and the linear layer for dimensionality reduction | |
Args: | |
- input_ids (torch.LongTensor): The input tokens tensor. | |
- attention_mask (torch.LongTensor): The attention mask tensor. | |
Returns: | |
- torch.Tensor: Embeddings of shape (batch_size, num_tokens, dim) | |
""" | |
outputs = self.model(*args, output_hidden_states=True, **kwargs) | |
last_hidden_states = outputs.hidden_states[-1] # (batch_size, sequence_length, hidden_size) | |
# pooling -mean on attention mask==1 | |
proj = torch.sum(last_hidden_states * kwargs["attention_mask"].unsqueeze(-1), dim=1) / torch.sum( | |
kwargs["attention_mask"], dim=1, keepdim=True | |
) | |
proj = proj / proj.norm(dim=-1, keepdim=True) | |
return proj | |
class ColPali(PaliGemmaPreTrainedModel): | |
def __init__(self, config): | |
super(ColPali, self).__init__(config=config) | |
self.model: PaliGemmaForConditionalGeneration = PaliGemmaForConditionalGeneration(config) | |
self.dim = 128 | |
self.custom_text_proj = nn.Linear(self.model.config.text_config.hidden_size, self.dim) | |
self.main_input_name = "doc_input_ids" | |
def forward(self, *args, **kwargs): | |
""" | |
Forward pass through Llama and the linear layer for dimensionality reduction | |
Args: | |
- input_ids (torch.LongTensor): The input tokens tensor. | |
- attention_mask (torch.LongTensor): The attention mask tensor. | |
Returns: | |
- torch.Tensor: Embeddings of shape (batch_size, num_tokens, dim) | |
""" | |
outputs = self.model(*args, output_hidden_states=True, **kwargs) | |
last_hidden_states = outputs.hidden_states[-1] # (batch_size, sequence_length, hidden_size) | |
proj = self.custom_text_proj(last_hidden_states) | |
# normalize l2 norm | |
proj = proj / proj.norm(dim=-1, keepdim=True) | |
proj = proj * kwargs["attention_mask"].unsqueeze(-1) | |
return proj | |
class ColNewSiglip(PaliGemmaPreTrainedModel): | |
def __init__(self, config): | |
super(ColNewSiglip, self).__init__(config=config) | |
self.model: PaliGemmaForConditionalGeneration = PaliGemmaForConditionalGeneration(config) | |
self.dim = 128 | |
self.custom_image_proj = nn.Linear(self.model.config.vision_config.projection_dim, self.dim) | |
self.custom_text_proj = nn.Linear(self.model.config.text_config.hidden_size, self.dim) | |
self.main_input_name = "doc_input_ids" | |
def forward(self, *args, **kwargs): | |
""" | |
Forward pass through Llama and the linear layer for dimensionality reduction | |
Args: | |
- input_ids (torch.LongTensor): The input tokens tensor. | |
- attention_mask (torch.LongTensor): The attention mask tensor. | |
Returns: | |
- torch.Tensor: Embeddings of shape (batch_size, num_tokens, dim) | |
""" | |
# outputs = self.model(*args, output_hidden_states=True, **kwargs) | |
if "pixel_values" in kwargs: | |
image_features = self.vision_model_output(*args, **kwargs) | |
# print(f"Doc: {image_features.shape}") | |
proj = self.custom_image_proj(image_features) | |
# print(f"Doc proj: {proj.shape}") | |
proj = proj / proj.norm(dim=-1, keepdim=True) | |
else: | |
outputs = self.model(*args, output_hidden_states=True, **kwargs) | |
last_hidden_states = outputs.hidden_states[-1] # (batch_size, sequence_length, hidden_size) | |
# print(f"Query: {last_hidden_states.shape}") | |
proj = self.custom_text_proj(last_hidden_states) | |
# print(f"Query proj: {proj.shape}") | |
# normalize l2 norm | |
proj = proj / proj.norm(dim=-1, keepdim=True) | |
proj = proj * kwargs["attention_mask"].unsqueeze(-1) | |
return proj | |
def vision_model_output(self, input_ids: torch.LongTensor = None, pixel_values: torch.FloatTensor = None, **kwargs): | |
inputs_embeds = self.model.get_input_embeddings()(input_ids) | |
# 2. Merge text and images | |
if pixel_values is not None and input_ids.shape[1] != 1: | |
image_outputs = self.model.vision_tower(pixel_values.to(inputs_embeds.dtype)) | |
selected_image_feature = image_outputs.last_hidden_state | |
image_features = self.model.multi_modal_projector(selected_image_feature) | |
return image_features | |
raise ValueError("pixel_values is None or input_ids.shape[1] == 1") | |
class BiNewSiglip(PaliGemmaPreTrainedModel): | |
def __init__(self, config): | |
super(BiNewSiglip, self).__init__(config=config) | |
self.model: PaliGemmaForConditionalGeneration = PaliGemmaForConditionalGeneration(config) | |
self.main_input_name = "doc_input_ids" | |
def forward(self, *args, **kwargs): | |
""" | |
Forward pass through Llama and the linear layer for dimensionality reduction | |
Args: | |
- input_ids (torch.LongTensor): The input tokens tensor. | |
- attention_mask (torch.LongTensor): The attention mask tensor. | |
Returns: | |
- torch.Tensor: Embeddings of shape (batch_size, num_tokens, dim) | |
""" | |
# outputs = self.model(*args, output_hidden_states=True, **kwargs) | |
if "pixel_values" in kwargs: | |
image_features = self.vision_model_output(*args, **kwargs) | |
# print(f"Doc: {image_features.shape}") | |
# pool image features | |
proj = torch.mean(image_features, dim=1) | |
# print(f"Doc proj: {proj.shape}") | |
norm = proj.norm(dim=-1, keepdim=True) | |
proj = proj / norm | |
else: | |
outputs = self.model(*args, output_hidden_states=True, **kwargs) | |
last_hidden_states = outputs.hidden_states[-1] # (batch_size, sequence_length, hidden_size) | |
# pooling -mean on attention mask==1 | |
proj = torch.sum(last_hidden_states * kwargs["attention_mask"].unsqueeze(-1), dim=1) / torch.sum( | |
kwargs["attention_mask"], dim=1, keepdim=True | |
) | |
# print(f"Query proj: {proj.shape}") | |
norm = proj.norm(dim=-1, keepdim=True) | |
proj = proj / norm | |
return proj | |
def vision_model_output(self, input_ids: torch.LongTensor = None, pixel_values: torch.FloatTensor = None, **kwargs): | |
inputs_embeds = self.model.get_input_embeddings()(input_ids) | |
# 2. Merge text and images | |
if pixel_values is not None and input_ids.shape[1] != 1: | |
image_outputs = self.model.vision_tower(pixel_values.to(inputs_embeds.dtype)) | |
selected_image_feature = image_outputs.last_hidden_state | |
image_features = self.model.multi_modal_projector(selected_image_feature) | |
return image_features | |
raise ValueError("pixel_values is None or input_ids.shape[1] == 1") | |