File size: 8,416 Bytes
9ff79dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import torch
from torch import nn
from transformers.models.paligemma.modeling_paligemma import PaliGemmaForConditionalGeneration, PaliGemmaPreTrainedModel


class BiPaliLast(PaliGemmaPreTrainedModel):
    def __init__(self, config):
        super(BiPaliLast, self).__init__(config=config)
        self.model: PaliGemmaForConditionalGeneration = PaliGemmaForConditionalGeneration(config)
        self.pooling_strategy = "last"
        self.main_input_name = "doc_input_ids"

    def forward(self, *args, **kwargs):
        """
        Forward pass through Llama and the linear layer for dimensionality reduction

        Args:
        - input_ids (torch.LongTensor): The input tokens tensor.
        - attention_mask (torch.LongTensor): The attention mask tensor.

        Returns:
        - torch.Tensor: Embeddings of shape (batch_size, num_tokens, dim)
        """
        outputs = self.model(*args, output_hidden_states=True, **kwargs)
        last_hidden_states = outputs.hidden_states[-1]  # (batch_size, sequence_length, hidden_size)
        # pooling - last token
        proj = last_hidden_states[:, -1, :]
        # normalize l2 norm
        proj = proj / proj.norm(dim=-1, keepdim=True)
        return proj


class BiPaliMean(PaliGemmaPreTrainedModel):
    def __init__(self, config):
        super(BiPaliMean, self).__init__(config=config)
        self.model: PaliGemmaForConditionalGeneration = PaliGemmaForConditionalGeneration(config)
        self.pooling_strategy = "mean"
        self.main_input_name = "doc_input_ids"

    def forward(self, *args, **kwargs):
        """
        Forward pass through Llama and the linear layer for dimensionality reduction

        Args:
        - input_ids (torch.LongTensor): The input tokens tensor.
        - attention_mask (torch.LongTensor): The attention mask tensor.

        Returns:
        - torch.Tensor: Embeddings of shape (batch_size, num_tokens, dim)
        """
        outputs = self.model(*args, output_hidden_states=True, **kwargs)
        last_hidden_states = outputs.hidden_states[-1]  # (batch_size, sequence_length, hidden_size)
        # pooling -mean on attention mask==1
        proj = torch.sum(last_hidden_states * kwargs["attention_mask"].unsqueeze(-1), dim=1) / torch.sum(
            kwargs["attention_mask"], dim=1, keepdim=True
        )
        proj = proj / proj.norm(dim=-1, keepdim=True)
        return proj


class ColPali(PaliGemmaPreTrainedModel):
    def __init__(self, config):
        super(ColPali, self).__init__(config=config)
        self.model: PaliGemmaForConditionalGeneration = PaliGemmaForConditionalGeneration(config)
        self.dim = 128
        self.custom_text_proj = nn.Linear(self.model.config.text_config.hidden_size, self.dim)
        self.main_input_name = "doc_input_ids"

    def forward(self, *args, **kwargs):
        """
        Forward pass through Llama and the linear layer for dimensionality reduction

        Args:
        - input_ids (torch.LongTensor): The input tokens tensor.
        - attention_mask (torch.LongTensor): The attention mask tensor.

        Returns:
        - torch.Tensor: Embeddings of shape (batch_size, num_tokens, dim)
        """
        outputs = self.model(*args, output_hidden_states=True, **kwargs)
        last_hidden_states = outputs.hidden_states[-1]  # (batch_size, sequence_length, hidden_size)
        proj = self.custom_text_proj(last_hidden_states)
        # normalize l2 norm
        proj = proj / proj.norm(dim=-1, keepdim=True)
        proj = proj * kwargs["attention_mask"].unsqueeze(-1)
        return proj


class ColNewSiglip(PaliGemmaPreTrainedModel):
    def __init__(self, config):
        super(ColNewSiglip, self).__init__(config=config)
        self.model: PaliGemmaForConditionalGeneration = PaliGemmaForConditionalGeneration(config)
        self.dim = 128
        self.custom_image_proj = nn.Linear(self.model.config.vision_config.projection_dim, self.dim)
        self.custom_text_proj = nn.Linear(self.model.config.text_config.hidden_size, self.dim)
        self.main_input_name = "doc_input_ids"

    def forward(self, *args, **kwargs):
        """
        Forward pass through Llama and the linear layer for dimensionality reduction

        Args:
        - input_ids (torch.LongTensor): The input tokens tensor.
        - attention_mask (torch.LongTensor): The attention mask tensor.

        Returns:
        - torch.Tensor: Embeddings of shape (batch_size, num_tokens, dim)
        """
        # outputs = self.model(*args, output_hidden_states=True, **kwargs)
        if "pixel_values" in kwargs:
            image_features = self.vision_model_output(*args, **kwargs)
            # print(f"Doc: {image_features.shape}")
            proj = self.custom_image_proj(image_features)
            # print(f"Doc proj: {proj.shape}")
            proj = proj / proj.norm(dim=-1, keepdim=True)
        else:
            outputs = self.model(*args, output_hidden_states=True, **kwargs)
            last_hidden_states = outputs.hidden_states[-1]  # (batch_size, sequence_length, hidden_size)
            # print(f"Query: {last_hidden_states.shape}")
            proj = self.custom_text_proj(last_hidden_states)
            # print(f"Query proj: {proj.shape}")
            # normalize l2 norm
            proj = proj / proj.norm(dim=-1, keepdim=True)
            proj = proj * kwargs["attention_mask"].unsqueeze(-1)
        return proj

    def vision_model_output(self, input_ids: torch.LongTensor = None, pixel_values: torch.FloatTensor = None, **kwargs):

        inputs_embeds = self.model.get_input_embeddings()(input_ids)
        # 2. Merge text and images
        if pixel_values is not None and input_ids.shape[1] != 1:
            image_outputs = self.model.vision_tower(pixel_values.to(inputs_embeds.dtype))
            selected_image_feature = image_outputs.last_hidden_state
            image_features = self.model.multi_modal_projector(selected_image_feature)

            return image_features

        raise ValueError("pixel_values is None or input_ids.shape[1] == 1")


class BiNewSiglip(PaliGemmaPreTrainedModel):
    def __init__(self, config):
        super(BiNewSiglip, self).__init__(config=config)
        self.model: PaliGemmaForConditionalGeneration = PaliGemmaForConditionalGeneration(config)
        self.main_input_name = "doc_input_ids"

    def forward(self, *args, **kwargs):
        """
        Forward pass through Llama and the linear layer for dimensionality reduction

        Args:
        - input_ids (torch.LongTensor): The input tokens tensor.
        - attention_mask (torch.LongTensor): The attention mask tensor.

        Returns:
        - torch.Tensor: Embeddings of shape (batch_size, num_tokens, dim)
        """
        # outputs = self.model(*args, output_hidden_states=True, **kwargs)
        if "pixel_values" in kwargs:
            image_features = self.vision_model_output(*args, **kwargs)
            # print(f"Doc: {image_features.shape}")
            # pool image features
            proj = torch.mean(image_features, dim=1)
            # print(f"Doc proj: {proj.shape}")
            norm = proj.norm(dim=-1, keepdim=True)
            proj = proj / norm
        else:
            outputs = self.model(*args, output_hidden_states=True, **kwargs)
            last_hidden_states = outputs.hidden_states[-1]  # (batch_size, sequence_length, hidden_size)
            # pooling -mean on attention mask==1

            proj = torch.sum(last_hidden_states * kwargs["attention_mask"].unsqueeze(-1), dim=1) / torch.sum(
                kwargs["attention_mask"], dim=1, keepdim=True
            )
            # print(f"Query proj: {proj.shape}")
            norm = proj.norm(dim=-1, keepdim=True)
            proj = proj / norm
        return proj

    def vision_model_output(self, input_ids: torch.LongTensor = None, pixel_values: torch.FloatTensor = None, **kwargs):

        inputs_embeds = self.model.get_input_embeddings()(input_ids)
        # 2. Merge text and images
        if pixel_values is not None and input_ids.shape[1] != 1:
            image_outputs = self.model.vision_tower(pixel_values.to(inputs_embeds.dtype))
            selected_image_feature = image_outputs.last_hidden_state
            image_features = self.model.multi_modal_projector(selected_image_feature)

            return image_features

        raise ValueError("pixel_values is None or input_ids.shape[1] == 1")