Spaces:
Running
Running
File size: 8,416 Bytes
9ff79dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
import torch
from torch import nn
from transformers.models.paligemma.modeling_paligemma import PaliGemmaForConditionalGeneration, PaliGemmaPreTrainedModel
class BiPaliLast(PaliGemmaPreTrainedModel):
def __init__(self, config):
super(BiPaliLast, self).__init__(config=config)
self.model: PaliGemmaForConditionalGeneration = PaliGemmaForConditionalGeneration(config)
self.pooling_strategy = "last"
self.main_input_name = "doc_input_ids"
def forward(self, *args, **kwargs):
"""
Forward pass through Llama and the linear layer for dimensionality reduction
Args:
- input_ids (torch.LongTensor): The input tokens tensor.
- attention_mask (torch.LongTensor): The attention mask tensor.
Returns:
- torch.Tensor: Embeddings of shape (batch_size, num_tokens, dim)
"""
outputs = self.model(*args, output_hidden_states=True, **kwargs)
last_hidden_states = outputs.hidden_states[-1] # (batch_size, sequence_length, hidden_size)
# pooling - last token
proj = last_hidden_states[:, -1, :]
# normalize l2 norm
proj = proj / proj.norm(dim=-1, keepdim=True)
return proj
class BiPaliMean(PaliGemmaPreTrainedModel):
def __init__(self, config):
super(BiPaliMean, self).__init__(config=config)
self.model: PaliGemmaForConditionalGeneration = PaliGemmaForConditionalGeneration(config)
self.pooling_strategy = "mean"
self.main_input_name = "doc_input_ids"
def forward(self, *args, **kwargs):
"""
Forward pass through Llama and the linear layer for dimensionality reduction
Args:
- input_ids (torch.LongTensor): The input tokens tensor.
- attention_mask (torch.LongTensor): The attention mask tensor.
Returns:
- torch.Tensor: Embeddings of shape (batch_size, num_tokens, dim)
"""
outputs = self.model(*args, output_hidden_states=True, **kwargs)
last_hidden_states = outputs.hidden_states[-1] # (batch_size, sequence_length, hidden_size)
# pooling -mean on attention mask==1
proj = torch.sum(last_hidden_states * kwargs["attention_mask"].unsqueeze(-1), dim=1) / torch.sum(
kwargs["attention_mask"], dim=1, keepdim=True
)
proj = proj / proj.norm(dim=-1, keepdim=True)
return proj
class ColPali(PaliGemmaPreTrainedModel):
def __init__(self, config):
super(ColPali, self).__init__(config=config)
self.model: PaliGemmaForConditionalGeneration = PaliGemmaForConditionalGeneration(config)
self.dim = 128
self.custom_text_proj = nn.Linear(self.model.config.text_config.hidden_size, self.dim)
self.main_input_name = "doc_input_ids"
def forward(self, *args, **kwargs):
"""
Forward pass through Llama and the linear layer for dimensionality reduction
Args:
- input_ids (torch.LongTensor): The input tokens tensor.
- attention_mask (torch.LongTensor): The attention mask tensor.
Returns:
- torch.Tensor: Embeddings of shape (batch_size, num_tokens, dim)
"""
outputs = self.model(*args, output_hidden_states=True, **kwargs)
last_hidden_states = outputs.hidden_states[-1] # (batch_size, sequence_length, hidden_size)
proj = self.custom_text_proj(last_hidden_states)
# normalize l2 norm
proj = proj / proj.norm(dim=-1, keepdim=True)
proj = proj * kwargs["attention_mask"].unsqueeze(-1)
return proj
class ColNewSiglip(PaliGemmaPreTrainedModel):
def __init__(self, config):
super(ColNewSiglip, self).__init__(config=config)
self.model: PaliGemmaForConditionalGeneration = PaliGemmaForConditionalGeneration(config)
self.dim = 128
self.custom_image_proj = nn.Linear(self.model.config.vision_config.projection_dim, self.dim)
self.custom_text_proj = nn.Linear(self.model.config.text_config.hidden_size, self.dim)
self.main_input_name = "doc_input_ids"
def forward(self, *args, **kwargs):
"""
Forward pass through Llama and the linear layer for dimensionality reduction
Args:
- input_ids (torch.LongTensor): The input tokens tensor.
- attention_mask (torch.LongTensor): The attention mask tensor.
Returns:
- torch.Tensor: Embeddings of shape (batch_size, num_tokens, dim)
"""
# outputs = self.model(*args, output_hidden_states=True, **kwargs)
if "pixel_values" in kwargs:
image_features = self.vision_model_output(*args, **kwargs)
# print(f"Doc: {image_features.shape}")
proj = self.custom_image_proj(image_features)
# print(f"Doc proj: {proj.shape}")
proj = proj / proj.norm(dim=-1, keepdim=True)
else:
outputs = self.model(*args, output_hidden_states=True, **kwargs)
last_hidden_states = outputs.hidden_states[-1] # (batch_size, sequence_length, hidden_size)
# print(f"Query: {last_hidden_states.shape}")
proj = self.custom_text_proj(last_hidden_states)
# print(f"Query proj: {proj.shape}")
# normalize l2 norm
proj = proj / proj.norm(dim=-1, keepdim=True)
proj = proj * kwargs["attention_mask"].unsqueeze(-1)
return proj
def vision_model_output(self, input_ids: torch.LongTensor = None, pixel_values: torch.FloatTensor = None, **kwargs):
inputs_embeds = self.model.get_input_embeddings()(input_ids)
# 2. Merge text and images
if pixel_values is not None and input_ids.shape[1] != 1:
image_outputs = self.model.vision_tower(pixel_values.to(inputs_embeds.dtype))
selected_image_feature = image_outputs.last_hidden_state
image_features = self.model.multi_modal_projector(selected_image_feature)
return image_features
raise ValueError("pixel_values is None or input_ids.shape[1] == 1")
class BiNewSiglip(PaliGemmaPreTrainedModel):
def __init__(self, config):
super(BiNewSiglip, self).__init__(config=config)
self.model: PaliGemmaForConditionalGeneration = PaliGemmaForConditionalGeneration(config)
self.main_input_name = "doc_input_ids"
def forward(self, *args, **kwargs):
"""
Forward pass through Llama and the linear layer for dimensionality reduction
Args:
- input_ids (torch.LongTensor): The input tokens tensor.
- attention_mask (torch.LongTensor): The attention mask tensor.
Returns:
- torch.Tensor: Embeddings of shape (batch_size, num_tokens, dim)
"""
# outputs = self.model(*args, output_hidden_states=True, **kwargs)
if "pixel_values" in kwargs:
image_features = self.vision_model_output(*args, **kwargs)
# print(f"Doc: {image_features.shape}")
# pool image features
proj = torch.mean(image_features, dim=1)
# print(f"Doc proj: {proj.shape}")
norm = proj.norm(dim=-1, keepdim=True)
proj = proj / norm
else:
outputs = self.model(*args, output_hidden_states=True, **kwargs)
last_hidden_states = outputs.hidden_states[-1] # (batch_size, sequence_length, hidden_size)
# pooling -mean on attention mask==1
proj = torch.sum(last_hidden_states * kwargs["attention_mask"].unsqueeze(-1), dim=1) / torch.sum(
kwargs["attention_mask"], dim=1, keepdim=True
)
# print(f"Query proj: {proj.shape}")
norm = proj.norm(dim=-1, keepdim=True)
proj = proj / norm
return proj
def vision_model_output(self, input_ids: torch.LongTensor = None, pixel_values: torch.FloatTensor = None, **kwargs):
inputs_embeds = self.model.get_input_embeddings()(input_ids)
# 2. Merge text and images
if pixel_values is not None and input_ids.shape[1] != 1:
image_outputs = self.model.vision_tower(pixel_values.to(inputs_embeds.dtype))
selected_image_feature = image_outputs.last_hidden_state
image_features = self.model.multi_modal_projector(selected_image_feature)
return image_features
raise ValueError("pixel_values is None or input_ids.shape[1] == 1")
|