ymzhang319's picture
init
7f2690b
import copy
import cv2
import itertools as itl
import json
import kornia as K
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
import matplotlib.pyplot as plt
import numpy as np
import os
from pathlib import Path
import PIL
from PIL import Image, ImageDraw, ImageFont
import pylab
import random
import torch
import pdb
def clip_rescale(x, lo = None, hi = None):
if lo is None:
lo = np.min(x)
if hi is None:
hi = np.max(x)
return np.clip((x - lo)/(hi - lo), 0., 1.)
def apply_cmap(im, cmap = pylab.cm.jet, lo = None, hi = None):
return cmap(clip_rescale(im, lo, hi).flatten()).reshape(im.shape[:2] + (-1,))[:, :, :3]
def cmap_im(cmap, im, lo = None, hi = None):
return np.uint8(255*apply_cmap(im, cmap, lo, hi))
def calc_acc(prob, labels, k=1):
thred = 0.5
pred = torch.argsort(prob, dim=-1, descending=True)[..., :k]
corr = (pred.view(-1) == labels).cpu().numpy()
corr = corr.reshape((-1, resol*resol))
acc = corr.sum(1) / (resol*resol) # compute rate of successful patch for each image
corr_index = np.where((acc > thred) == True)[0]
return corr_index
# def compute_acc_list(A_IS, k=0):
# criterion = nn.NLLLoss()
# M, N = A_IS.size()
# target = torch.from_numpy(np.repeat(np.eye(N), M // N, axis=0)).to(DEVICE)
# _, labels = target.max(dim=1)
# loss = criterion(torch.log(A_IS), labels.long())
# acc = None
# if k > 0:
# corr_index = calc_acc(A_IS, labels, k)
# return corr_index
def get_fcn_sim(full_img, feat_audio, net, B, resol, norm=True):
feat_img = net.forward_fcn(full_img)
feat_img = feat_img.permute(0, 2,3,1).reshape(-1, 128)
A_II, A_IS, A_SI = net.GetAMatrix(feat_img, feat_audio, norm=norm)
A_IS_ = A_IS.reshape((B, resol*resol, B))
A_IIS_ = (A_II @ A_IS).reshape((B, resol*resol, B))
A_II_ = A_II.reshape((B, resol*resol, B*resol*resol))
return A_IS_, A_IIS_, A_II_
def upsample_lowest(sim, im_h, im_w, pr):
sim_h, sim_w = sim.shape
prob_map_per_patch = np.zeros((im_h, im_w, pr.resol*pr.resol))
# pdb.set_trace()
for i in range(pr.resol):
for j in range(pr.resol):
y1 = pr.patch_stride * i
y2 = pr.patch_stride * i + pr.psize
x1 = pr.patch_stride * j
x2 = pr.patch_stride * j + pr.psize
prob_map_per_patch[y1:y2, x1:x2, i * pr.resol + j] = sim[i, j]
# pdb.set_trace()
upsampled = np.sum(prob_map_per_patch, axis=-1) / np.sum(prob_map_per_patch > 0, axis=-1)
return upsampled
def grid_interp(pr, input, output_size, mode='bilinear'):
# import pdb; pdb.set_trace()
n = 1
c = 1
ih, iw = input.shape
input = input.view(n, c, ih, iw)
oh, ow = output_size
pad = (pr.psize - pr.patch_stride) // 2
ch = oh - pad * 2
cw = ow - pad * 2
# normalize to [-1, 1]
h = (torch.arange(0, oh) - pad) / (ch-1) * 2 - 1
w = (torch.arange(0, ow) - pad) / (cw-1) * 2 - 1
grid = torch.zeros(oh, ow, 2)
grid[:, :, 0] = w.unsqueeze(0).repeat(oh, 1)
grid[:, :, 1] = h.unsqueeze(0).repeat(ow, 1).transpose(0, 1)
grid = grid.unsqueeze(0).repeat(n, 1, 1, 1) # grid.shape: [n, oh, ow, 2]
grid = grid.to(input.device)
res = torch.nn.functional.grid_sample(input, grid, mode=mode, padding_mode="border", align_corners=False).squeeze()
return res
def upsample_lowest_torch(sim, im_h, im_w, pr):
sim = sim.reshape(pr.resol*pr.resol)
# precompute the temeplate
prob_map_per_patch = torch.from_numpy(pr.template).to('cuda')
prob_map_per_patch = prob_map_per_patch * sim.reshape(1,1,-1)
upsampled = torch.sum(prob_map_per_patch, dim=-1) / torch.sum(prob_map_per_patch > 0, dim=-1)
return upsampled
def gen_vis_map(prob, im_h, im_w, pr, bound=False, lo=0, hi=0.3, mode='nearest'):
"""
prob: probability map for patches
im_h, im_w: original image size
resol: resolution of patches
bound: whether to give low and high bound for probability
lo:
hi:
mode: upsample method for probability
"""
resol = pr.resol
if mode == 'nearest':
resample = PIL.Image.NEAREST
elif mode == 'bilinear':
resample = PIL.Image.BILINEAR
sim = prob.reshape((resol, resol))
# pdb.set_trace()
# updample similarity
if mode in ['nearest', 'bilinear']:
if torch.is_tensor(sim):
sim = sim.cpu().numpy()
sim_up = np.array(Image.fromarray(sim).resize((im_w, im_h), resample=resample))
elif mode == 'lowest':
sim_up = upsample_lowest_torch(sim, im_w, im_h, pr)
sim_up = sim_up.detach().cpu().numpy()
elif mode == 'grid':
sim_up = grid_interp(pr, sim, (im_h, im_w), 'bilinear')
sim_up = sim_up.detach().cpu().numpy()
if not bound:
lo = None
hi = None
# generate heat map
# pdb.set_trace()
vis = cmap_im(pylab.cm.jet, sim_up, lo=lo, hi=hi)
# p weights the cmap on original image
p = sim_up / sim_up.max() * 0.3 + 0.3
p = p[..., None]
return p, vis
def gen_upsampled_prob(prob, im_h, im_w, pr, bound=False, lo=0, hi=0.3, mode='nearest'):
"""
prob: probability map for patches
im_h, im_w: original image size
resol: resolution of patches
bound: whether to give low and high bound for probability
lo:
hi:
mode: upsample method for probability
"""
resol = pr.resol
if mode == 'nearest':
resample = PIL.Image.NEAREST
elif mode == 'bilinear':
resample = PIL.Image.BILINEAR
sim = prob.reshape((resol, resol))
# pdb.set_trace()
# updample similarity
if mode in ['nearest', 'bilinear']:
if torch.is_tensor(sim):
sim = sim.cpu().numpy()
sim_up = np.array(Image.fromarray(sim).resize((im_w, im_h), resample=resample))
elif mode == 'lowest':
sim_up = upsample_lowest_torch(sim, im_w, im_h, pr)
sim_up = sim_up.cpu().numpy()
sim_up = sim_up / sim_up.max()
return sim_up
def gen_vis_map_probmap_up(prob_up, bound=False, lo=0, hi=0.3, mode='nearest'):
if mode == 'nearest':
resample = PIL.Image.NEAREST
elif mode == 'bilinear':
resample = PIL.Image.BILINEAR
if not bound:
lo = None
hi = None
vis = cmap_im(pylab.cm.jet, prob_up, lo=None, hi=None)
if bound:
# when hi gets larger, cmap becomes less visibal
p = prob_up / prob_up.max() * (0.3+0.4*(1-hi)) + 0.3
else:
# if not bound, cmap always weights 0.3 on original image
p = prob_up / prob_up.max() * 0.3 + 0.3
p = p[..., None]
return p, vis
def rgb2bgr(im):
return cv2.cvtColor(im, cv2.COLOR_RGB2BGR)
def gen_bbox_patches(im, patch_ind, resol, patch_size=64, lin_w=3, lin_color=np.array([255,0,0])):
# TODO: make it work for different image size
stride = int((256-patch_size)/(resol-1))
im_w, im_h = im.shape[1], im.shape[0]
r_ind = patch_ind // resol
c_ind = patch_ind % resol
y1 = r_ind * stride
y2 = r_ind * stride + patch_size
x1 = c_ind * stride
x2 = c_ind * stride + patch_size
im_bbox = copy.deepcopy(im)
im_bbox[y1:y1+lin_w, x1:x2, :] = lin_color
im_bbox[y2-lin_w:y2, x1:x2, :] = lin_color
im_bbox[y1:y2, x1:x1+lin_w, :] = lin_color
im_bbox[y1:y2, x2-lin_w:x2, :] = lin_color
return (x1, y1, x2-x1, y2-y1), im_bbox
def get_fcn_sim(full_img, feat_audio, net, B, resol, norm=True):
feat_img = net.forward_fcn(full_img)
feat_img = feat_img.permute(0, 2,3,1).reshape(-1, 128)
A_II, A_IS, A_SI = net.GetAMatrix(feat_img, feat_audio, norm=norm)
A_IS_ = A_IS.reshape((B, resol*resol, B))
A_IIS_ = (A_II @ A_IS).reshape((B, resol*resol, B))
A_II_ = A_II.reshape((B, resol*resol, B, resol*resol))
return A_IS_, A_IIS_, A_II_
def put_text(im, text, loc, font_scale=4):
fontScale = font_scale
thickness = int(fontScale / 4)
fontColor = (0,255,255)
lineType = 4
im = cv2.putText(im, text, loc, cv2.FONT_HERSHEY_SIMPLEX, fontScale, fontColor, thickness, lineType)
return im
def im2video(save_path, frame_list, fps=5):
height, width, _ = frame_list[0].shape
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
video = cv2.VideoWriter(save_path, fourcc, fps, (width, height))
for frame in frame_list:
video.write(rgb2bgr(frame))
cv2.destroyAllWindows()
video.release()
new_name = "{}_new{}".format(save_path[:-4], save_path[-4:])
os.system("ffmpeg -v quiet -y -i \"{}\" -pix_fmt yuv420p -vcodec h264 -strict -2 -acodec aac \"{}\"".format(save_path, new_name))
os.system("rm -rf \"{}\"".format(save_path))
def get_face_landmark(frame_path_):
video_folder = Path(frame_path_).parent.parent
frame_name = frame_path_.split('/')[-1]
face_landmark_path = os.path.join(video_folder, "face_bbox_landmark.json")
if not os.path.exists(face_landmark_path):
return None
with open(face_landmark_path, 'r') as f:
face_landmark = json.load(f)
if len(face_landmark[frame_name]) == 0:
return None
b = face_landmark[frame_name][0]
return b
def make_color_wheel():
# same source as color_flow
RY = 15
YG = 6
GC = 4
CB = 11
BM = 13
MR = 6
ncols = RY + YG + GC + CB + BM + MR
#colorwheel = zeros(ncols, 3) # r g b
# matlab correction
colorwheel = np.zeros((1+ncols, 4)) # r g b
col = 0
#RY
colorwheel[1:1+RY, 1] = 255
colorwheel[1:1+RY, 2] = np.floor(255*np.arange(0, 1+RY-1)/RY).T
col = col+RY
#YG
colorwheel[col+1:col+1+YG, 1] = 255 - np.floor(255*np.arange(0,1+YG-1)/YG).T
colorwheel[col+1:col+1+YG, 2] = 255
col = col+YG
#GC
colorwheel[col+1:col+1+GC, 2] = 255
colorwheel[col+1:col+1+GC, 3] = np.floor(255*np.arange(0,1+GC-1)/GC).T
col = col+GC
#CB
colorwheel[col+1:col+1+CB, 2] = 255 - np.floor(255*np.arange(0,1+CB-1)/CB).T
colorwheel[col+1:col+1+CB, 3] = 255
col = col+CB
#BM
colorwheel[col+1:col+1+BM, 3] = 255
colorwheel[col+1:col+1+BM, 1] = np.floor(255*np.arange(0,1+BM-1)/BM).T
col = col+BM
#MR
colorwheel[col+1:col+1+MR, 3] = 255 - np.floor(255*np.arange(0,1+MR-1)/MR).T
colorwheel[col+1:col+1+MR, 1] = 255
# 1-based to 0-based indices
return colorwheel[1:, 1:]
def warp(im, flow):
# im : C x H x W
# flow : 2 x H x W, such that flow[dst_y, dst_x] = (src_x, src_y),
# where (src_x, src_y) is the pixel location we want to sample from.
# grid_sample the grid is in the range in [-1, 1]
grid = -1. + 2. * flow/(-1 + np.array([im.shape[2], im.shape[1]], np.float32))[:, None, None]
# print('grid range =', grid.min(), grid.max())
ft = torch.FloatTensor
warped = torch.nn.functional.grid_sample(
ft(im[None].astype(np.float32)),
ft(grid.transpose((1, 2, 0))[None]),
mode = 'bilinear', padding_mode = 'zeros', align_corners=True)
return warped.cpu().numpy()[0].astype(im.dtype)
def compute_color(u, v):
# from same source as color_flow; please see above comment
# nan_idx = ut.lor(np.isnan(u), np.isnan(v))
nan_idx = np.logical_or(np.isnan(u), np.isnan(v))
u[nan_idx] = 0
v[nan_idx] = 0
colorwheel = make_color_wheel()
ncols = colorwheel.shape[0]
rad = np.sqrt(u**2 + v**2)
a = np.arctan2(-v, -u)/np.pi
#fk = (a + 1)/2. * (ncols-1) + 1
fk = (a + 1)/2. * (ncols-1)
k0 = np.array(np.floor(fk), 'l')
k1 = k0 + 1
k1[k1 == ncols] = 1
f = fk - k0
im = np.zeros(u.shape + (3,))
for i in range(colorwheel.shape[1]):
tmp = colorwheel[:, i]
col0 = tmp[k0]/255.
col1 = tmp[k1]/255.
col = (1-f)*col0 + f*col1
idx = rad <= 1
col[idx] = 1 - rad[idx]*(1-col[idx])
col[np.logical_not(idx)] *= 0.75
im[:, :, i] = np.uint8(np.floor(255*col*(1-nan_idx)))
return im
def color_flow(flow, max_flow = None):
flow = flow.copy()
# based on flowToColor.m by Deqing Sun, orignally based on code by Daniel Scharstein
UNKNOWN_FLOW_THRESH = 1e9
UNKNOWN_FLOW = 1e10
height, width, nbands = flow.shape
assert nbands == 2
u, v = flow[:,:,0], flow[:,:,1]
maxu = -999.
maxv = -999.
minu = 999.
minv = 999.
maxrad = -1.
idx_unknown = np.logical_or(np.abs(u) > UNKNOWN_FLOW_THRESH, np.abs(v) > UNKNOWN_FLOW_THRESH)
u[idx_unknown] = 0
v[idx_unknown] = 0
maxu = max(maxu, np.max(u))
maxv = max(maxv, np.max(v))
minu = min(minu, np.min(u))
minv = min(minv, np.min(v))
rad = np.sqrt(u**2 + v**2)
maxrad = max(maxrad, np.max(rad))
if max_flow > 0:
maxrad = max_flow
u = u/(maxrad + np.spacing(1))
v = v/(maxrad + np.spacing(1))
im = compute_color(u, v)
im[idx_unknown] = 0
return im
def plt_fig_to_np_img(fig):
canvas = FigureCanvas(fig) # draw the canvas, cache the renderer
canvas.draw()
width, height = fig.get_size_inches() * fig.get_dpi()
image = np.fromstring(canvas.tostring_rgb(), dtype='uint8')
image = image.reshape(int(height), int(width), 3)
return image
def save_np_img(image, path):
cv2.imwrite(path, rgb2bgr(image))
def find_patch_topk_aud(mat, top_k):
top_k_ind = torch.argsort(mat, dim=-1, descending=True)[..., :top_k].squeeze()
top_k_ind = top_k_ind.reshape(-1).cpu().numpy()
return top_k_ind
def find_patch_pred_topk(mat, top_k, target):
M, N = mat.size()
labels = torch.from_numpy(target * np.ones(M)).to('cuda')
top_k_ind = torch.sum(torch.argsort(mat, dim=-1, descending=True)[..., :top_k] == labels.view(-1, 1), dim=-1).nonzero().reshape(-1)
top_k_ind = top_k_ind.reshape(-1).cpu().numpy()
return top_k_ind
def gen_masked_img(mask_ind, resol, img):
mask = torch.zeros(resol*resol)
mask = mask.scatter_(0, torch.from_numpy(mask_ind), 1.)
mask = mask.reshape(resol, resol).numpy()
img_h = img.shape[1]
img_w = img.shape[0]
mask_up = np.array(Image.fromarray(mask*255).resize((img_h, img_w), resample=PIL.Image.NEAREST))
mask_up = mask_up[..., None]
image_seg = np.uint8(img * 0.7 + mask_up * 0.3)
return image_seg
def drop_2rand_ch(patch, remain_c=0):
B, P, C, H, W = patch.shape
patch_c = patch[:, :, remain_c, :, :].unsqueeze(2)
# patch_droped = torch.zeros_like(patch)
# patch_droped[:, :, remain_c, :, :] = patch_c
c_std = torch.std(patch_c, dim=(3,4))
gauss_n = 0.5 + (0.01 * c_std.reshape(B, P, 1, 1, 1) * torch.randn(B, P, 2, H, W).to('cuda'))
patch_dropped = torch.cat([gauss_n[:, :, :remain_c], patch_c, gauss_n[:, :, remain_c:]], dim=2)
return patch_dropped
# pdb.set_trace()
def vis_patch(patch, exp_path, resol, b_step):
B, P, C, H, W = patch.shape
for i in range(B):
patch_i = patch[i].reshape(resol, resol, C, H, W)
patch_i = patch_i.permute(2, 0, 3, 1, 4)
patch_folded_i = patch_i.reshape(C, resol*H, resol*W)
patch_folded_i = (patch_folded_i * 255).cpu().numpy().astype(np.uint8).transpose(1,2,0)
cv2.imwrite('{}/{}_{}_patch_folded.jpg'.format(exp_path, str(b_step).zfill(4), str(i).zfill(4)), rgb2bgr(patch_folded_i))
def blur_patch(patch, k_size=3, sigma=0.5):
B, P, C, H, W = patch.shape
gauss = K.filters.GaussianBlur2d((k_size, k_size), (sigma, sigma))
patch = patch.reshape(B*P, C, H, W)
blur_patch = gauss(patch).reshape(B, P, C, H, W)
return blur_patch
def gray_project_patch(patch, device):
N, P, C, H, W = patch.size()
a = torch.tensor([[-1, 2, -1]]).float()
B = (torch.eye(3) - (a.T @ a) / (a @ a.T)).to(device)
patch = patch.permute(0, 1, 3, 4, 2)
patch = (patch @ B).permute(0, 1, 4, 2, 3)
return patch
def parse_color(c):
if type(c) == type((0,)) or type(c) == type(np.array([1])):
return c
elif type(c) == type(''):
return color_from_string(c)
def colors_from_input(color_input, default, n):
""" Parse color given as input argument; gives user several options """
# todo: generalize this to non-colors
expanded = None
if color_input is None:
expanded = [default] * n
elif (type(color_input) == type((1,))) and map(type, color_input) == [int, int, int]:
# expand (r, g, b) -> [(r, g, b), (r, g, b), ..]
expanded = [color_input] * n
else:
# general case: [(r1, g1, b1), (r2, g2, b2), ...]
expanded = color_input
expanded = map(parse_color, expanded)
return expanded
def draw_pts(im, points, colors = None, width = 1, texts = None):
# ut.check(colors is None or len(colors) == len(points))
points = list(points)
colors = colors_from_input(colors, (255, 0, 0), len(points))
rects = [(p[0] - width/2, p[1] - width/2, width, width) for p in points]
return draw_rects(im, rects, fills = colors, outlines = [None]*len(points), texts = texts)
def to_pil(im):
#print im.dtype
return Image.fromarray(np.uint8(im))
def from_pil(pil):
#print pil
return np.array(pil)
def draw_on(f, im):
pil = to_pil(im)
draw = ImageDraw.ImageDraw(pil)
f(draw)
return from_pil(pil)
def fail(s = ''): raise RuntimeError(s)
def check(cond, str = 'Check failed!'):
if not cond:
fail(str)
def draw_rects(im, rects, outlines = None, fills = None, texts = None, text_colors = None, line_widths = None, as_oval = False):
rects = list(rects)
outlines = colors_from_input(outlines, (0, 0, 255), len(rects))
outlines = list(outlines)
text_colors = colors_from_input(text_colors, (255, 255, 255), len(rects))
text_colors = list(text_colors)
fills = colors_from_input(fills, None, len(rects))
fills = list(fills)
if texts is None: texts = [None] * len(rects)
if line_widths is None: line_widths = [None] * len(rects)
def check_size(x, s):
check(x is None or len(list(x)) == len(rects), "%s different size from rects" % s)
check_size(outlines, 'outlines')
check_size(fills, 'fills')
check_size(texts, 'texts')
check_size(text_colors, 'texts')
def f(draw):
for (x, y, w, h), outline, fill, text, text_color, lw in zip(rects, outlines, fills, texts, text_colors, line_widths):
if lw is None:
if as_oval:
draw.ellipse((x, y, x + w, y + h), outline = outline, fill = fill)
else:
draw.rectangle((x, y, x + w, y + h), outline = outline, fill = fill)
else:
d = int(np.ceil(lw/2))
draw.rectangle((x-d, y-d, x+w+d, y+d), fill = outline)
draw.rectangle((x-d, y-d, x+d, y+h+d), fill = outline)
draw.rectangle((x+w+d, y+h+d, x-d, y+h-d), fill = outline)
draw.rectangle((x+w+d, y+h+d, x+w-d, y-d), fill = outline)
if text is not None:
# draw text inside rectangle outline
border_width = 2
draw.text((border_width + x, y), text, fill = text_color)
return draw_on(f, im)
def rand_color():
return (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255))
def int_tuple(x):
return tuple([int(v) for v in x])
itup = int_tuple
red = (255, 0, 0)
green = (0, 255, 0)
blue = (0, 0, 255)
yellow = (255, 255, 0)
purple = (255, 0, 255)
cyan = (0, 255, 255)
def stash_seed(new_seed = 0):
""" Sets the random seed to new_seed. Returns the old seed. """
if type(new_seed) == type(''):
new_seed = hash(new_seed) % 2**32
py_state = random.getstate()
random.seed(new_seed)
np_state = np.random.get_state()
np.random.seed(new_seed)
return (py_state, np_state)
def do_with_seed(f, seed = 0):
old_seed = stash_seed(seed)
res = f()
unstash_seed(old_seed[0], old_seed[1])
return res
def sample_at_most(xs, bound):
return random.sample(xs, min(bound, len(xs)))
class ColorChooser:
def __init__(self, dist_thresh = 500, attempts = 500, init_colors = [], init_pts = []):
self.pts = init_pts
self.colors = init_colors
self.attempts = attempts
self.dist_thresh = dist_thresh
def choose(self, new_pt = (0, 0)):
new_pt = np.array(new_pt)
nearby_colors = []
for pt, c in zip(self.pts, self.colors):
if np.sum((pt - new_pt)**2) <= self.dist_thresh**2:
nearby_colors.append(c)
if len(nearby_colors) == 0:
color_best = rand_color()
else:
nearby_colors = np.array(sample_at_most(nearby_colors, 100), 'l')
choices = np.array(np.random.rand(self.attempts, 3)*256, 'l')
dists = np.sqrt(np.sum((choices[:, np.newaxis, :] - nearby_colors[np.newaxis, :, :])**2, axis = 2))
costs = np.min(dists, axis = 1)
assert costs.shape == (len(choices),)
color_best = itup(choices[np.argmax(costs)])
self.pts.append(new_pt)
self.colors.append(color_best)
return color_best
def unstash_seed(py_state, np_state):
random.setstate(py_state)
np.random.set_state(np_state)
def distinct_colors(n):
#cc = ColorChooser(attempts = 10, init_colors = [red, green, blue, yellow, purple, cyan], init_pts = [(0, 0)]*6)
cc = ColorChooser(attempts = 100, init_colors = [red, green, blue, yellow, purple, cyan], init_pts = [(0, 0)]*6)
do_with_seed(lambda : [cc.choose((0,0)) for x in range(n)])
return cc.colors[:n]
def make(w, h, fill = (0,0,0)):
return np.uint8(np.tile([[fill]], (h, w, 1)))
def rgb_from_gray(img, copy = True, remove_alpha = True):
if img.ndim == 3 and img.shape[2] == 3:
return img.copy() if copy else img
elif img.ndim == 3 and img.shape[2] == 4:
return (img.copy() if copy else img)[..., :3]
elif img.ndim == 3 and img.shape[2] == 1:
return np.tile(img, (1,1,3))
elif img.ndim == 2:
return np.tile(img[:,:,np.newaxis], (1,1,3))
else:
raise RuntimeError('Cannot convert to rgb. Shape: ' + str(img.shape))
def hstack_ims(ims, bg_color = (0, 0, 0)):
max_h = max([im.shape[0] for im in ims])
result = []
for im in ims:
#frame = np.zeros((max_h, im.shape[1], 3))
frame = make(im.shape[1], max_h, bg_color)
frame[:im.shape[0],:im.shape[1]] = rgb_from_gray(im)
result.append(frame)
return np.hstack(result)
def gen_ranked_prob_map(prob_map):
prob_ranked = torch.zeros_like(prob_map)
_, index = torch.topk(prob_map, len(prob_map), largest=False)
prob_ranked[index] = torch.arange(len(prob_map)).float().cuda()
prob_ranked = prob_ranked.float() / torch.max(prob_ranked)
return prob_ranked
def get_topk_patch_mask(prob_map):
# _, index =
pass
def load_img(frame_path):
image = Image.open(frame_path).convert('RGB')
image = image.resize((256, 256), resample=PIL.Image.BILINEAR)
image = np.array(image)
img_h = image.shape[0]
img_w = image.shape[1]
return image, img_h, img_w
def plt_subp_show_img(fig, img, cols, rows, subp_index, interpolation='bilinear', aspect='auto'):
fig.add_subplot(rows, cols, subp_index)
plt.cla()
plt.axis('off')
plt.imshow(img, interpolation=interpolation, aspect=aspect)
return fig