Spaces:
Running
on
Zero
Running
on
Zero
File size: 23,419 Bytes
7f2690b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 |
import copy
import cv2
import itertools as itl
import json
import kornia as K
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
import matplotlib.pyplot as plt
import numpy as np
import os
from pathlib import Path
import PIL
from PIL import Image, ImageDraw, ImageFont
import pylab
import random
import torch
import pdb
def clip_rescale(x, lo = None, hi = None):
if lo is None:
lo = np.min(x)
if hi is None:
hi = np.max(x)
return np.clip((x - lo)/(hi - lo), 0., 1.)
def apply_cmap(im, cmap = pylab.cm.jet, lo = None, hi = None):
return cmap(clip_rescale(im, lo, hi).flatten()).reshape(im.shape[:2] + (-1,))[:, :, :3]
def cmap_im(cmap, im, lo = None, hi = None):
return np.uint8(255*apply_cmap(im, cmap, lo, hi))
def calc_acc(prob, labels, k=1):
thred = 0.5
pred = torch.argsort(prob, dim=-1, descending=True)[..., :k]
corr = (pred.view(-1) == labels).cpu().numpy()
corr = corr.reshape((-1, resol*resol))
acc = corr.sum(1) / (resol*resol) # compute rate of successful patch for each image
corr_index = np.where((acc > thred) == True)[0]
return corr_index
# def compute_acc_list(A_IS, k=0):
# criterion = nn.NLLLoss()
# M, N = A_IS.size()
# target = torch.from_numpy(np.repeat(np.eye(N), M // N, axis=0)).to(DEVICE)
# _, labels = target.max(dim=1)
# loss = criterion(torch.log(A_IS), labels.long())
# acc = None
# if k > 0:
# corr_index = calc_acc(A_IS, labels, k)
# return corr_index
def get_fcn_sim(full_img, feat_audio, net, B, resol, norm=True):
feat_img = net.forward_fcn(full_img)
feat_img = feat_img.permute(0, 2,3,1).reshape(-1, 128)
A_II, A_IS, A_SI = net.GetAMatrix(feat_img, feat_audio, norm=norm)
A_IS_ = A_IS.reshape((B, resol*resol, B))
A_IIS_ = (A_II @ A_IS).reshape((B, resol*resol, B))
A_II_ = A_II.reshape((B, resol*resol, B*resol*resol))
return A_IS_, A_IIS_, A_II_
def upsample_lowest(sim, im_h, im_w, pr):
sim_h, sim_w = sim.shape
prob_map_per_patch = np.zeros((im_h, im_w, pr.resol*pr.resol))
# pdb.set_trace()
for i in range(pr.resol):
for j in range(pr.resol):
y1 = pr.patch_stride * i
y2 = pr.patch_stride * i + pr.psize
x1 = pr.patch_stride * j
x2 = pr.patch_stride * j + pr.psize
prob_map_per_patch[y1:y2, x1:x2, i * pr.resol + j] = sim[i, j]
# pdb.set_trace()
upsampled = np.sum(prob_map_per_patch, axis=-1) / np.sum(prob_map_per_patch > 0, axis=-1)
return upsampled
def grid_interp(pr, input, output_size, mode='bilinear'):
# import pdb; pdb.set_trace()
n = 1
c = 1
ih, iw = input.shape
input = input.view(n, c, ih, iw)
oh, ow = output_size
pad = (pr.psize - pr.patch_stride) // 2
ch = oh - pad * 2
cw = ow - pad * 2
# normalize to [-1, 1]
h = (torch.arange(0, oh) - pad) / (ch-1) * 2 - 1
w = (torch.arange(0, ow) - pad) / (cw-1) * 2 - 1
grid = torch.zeros(oh, ow, 2)
grid[:, :, 0] = w.unsqueeze(0).repeat(oh, 1)
grid[:, :, 1] = h.unsqueeze(0).repeat(ow, 1).transpose(0, 1)
grid = grid.unsqueeze(0).repeat(n, 1, 1, 1) # grid.shape: [n, oh, ow, 2]
grid = grid.to(input.device)
res = torch.nn.functional.grid_sample(input, grid, mode=mode, padding_mode="border", align_corners=False).squeeze()
return res
def upsample_lowest_torch(sim, im_h, im_w, pr):
sim = sim.reshape(pr.resol*pr.resol)
# precompute the temeplate
prob_map_per_patch = torch.from_numpy(pr.template).to('cuda')
prob_map_per_patch = prob_map_per_patch * sim.reshape(1,1,-1)
upsampled = torch.sum(prob_map_per_patch, dim=-1) / torch.sum(prob_map_per_patch > 0, dim=-1)
return upsampled
def gen_vis_map(prob, im_h, im_w, pr, bound=False, lo=0, hi=0.3, mode='nearest'):
"""
prob: probability map for patches
im_h, im_w: original image size
resol: resolution of patches
bound: whether to give low and high bound for probability
lo:
hi:
mode: upsample method for probability
"""
resol = pr.resol
if mode == 'nearest':
resample = PIL.Image.NEAREST
elif mode == 'bilinear':
resample = PIL.Image.BILINEAR
sim = prob.reshape((resol, resol))
# pdb.set_trace()
# updample similarity
if mode in ['nearest', 'bilinear']:
if torch.is_tensor(sim):
sim = sim.cpu().numpy()
sim_up = np.array(Image.fromarray(sim).resize((im_w, im_h), resample=resample))
elif mode == 'lowest':
sim_up = upsample_lowest_torch(sim, im_w, im_h, pr)
sim_up = sim_up.detach().cpu().numpy()
elif mode == 'grid':
sim_up = grid_interp(pr, sim, (im_h, im_w), 'bilinear')
sim_up = sim_up.detach().cpu().numpy()
if not bound:
lo = None
hi = None
# generate heat map
# pdb.set_trace()
vis = cmap_im(pylab.cm.jet, sim_up, lo=lo, hi=hi)
# p weights the cmap on original image
p = sim_up / sim_up.max() * 0.3 + 0.3
p = p[..., None]
return p, vis
def gen_upsampled_prob(prob, im_h, im_w, pr, bound=False, lo=0, hi=0.3, mode='nearest'):
"""
prob: probability map for patches
im_h, im_w: original image size
resol: resolution of patches
bound: whether to give low and high bound for probability
lo:
hi:
mode: upsample method for probability
"""
resol = pr.resol
if mode == 'nearest':
resample = PIL.Image.NEAREST
elif mode == 'bilinear':
resample = PIL.Image.BILINEAR
sim = prob.reshape((resol, resol))
# pdb.set_trace()
# updample similarity
if mode in ['nearest', 'bilinear']:
if torch.is_tensor(sim):
sim = sim.cpu().numpy()
sim_up = np.array(Image.fromarray(sim).resize((im_w, im_h), resample=resample))
elif mode == 'lowest':
sim_up = upsample_lowest_torch(sim, im_w, im_h, pr)
sim_up = sim_up.cpu().numpy()
sim_up = sim_up / sim_up.max()
return sim_up
def gen_vis_map_probmap_up(prob_up, bound=False, lo=0, hi=0.3, mode='nearest'):
if mode == 'nearest':
resample = PIL.Image.NEAREST
elif mode == 'bilinear':
resample = PIL.Image.BILINEAR
if not bound:
lo = None
hi = None
vis = cmap_im(pylab.cm.jet, prob_up, lo=None, hi=None)
if bound:
# when hi gets larger, cmap becomes less visibal
p = prob_up / prob_up.max() * (0.3+0.4*(1-hi)) + 0.3
else:
# if not bound, cmap always weights 0.3 on original image
p = prob_up / prob_up.max() * 0.3 + 0.3
p = p[..., None]
return p, vis
def rgb2bgr(im):
return cv2.cvtColor(im, cv2.COLOR_RGB2BGR)
def gen_bbox_patches(im, patch_ind, resol, patch_size=64, lin_w=3, lin_color=np.array([255,0,0])):
# TODO: make it work for different image size
stride = int((256-patch_size)/(resol-1))
im_w, im_h = im.shape[1], im.shape[0]
r_ind = patch_ind // resol
c_ind = patch_ind % resol
y1 = r_ind * stride
y2 = r_ind * stride + patch_size
x1 = c_ind * stride
x2 = c_ind * stride + patch_size
im_bbox = copy.deepcopy(im)
im_bbox[y1:y1+lin_w, x1:x2, :] = lin_color
im_bbox[y2-lin_w:y2, x1:x2, :] = lin_color
im_bbox[y1:y2, x1:x1+lin_w, :] = lin_color
im_bbox[y1:y2, x2-lin_w:x2, :] = lin_color
return (x1, y1, x2-x1, y2-y1), im_bbox
def get_fcn_sim(full_img, feat_audio, net, B, resol, norm=True):
feat_img = net.forward_fcn(full_img)
feat_img = feat_img.permute(0, 2,3,1).reshape(-1, 128)
A_II, A_IS, A_SI = net.GetAMatrix(feat_img, feat_audio, norm=norm)
A_IS_ = A_IS.reshape((B, resol*resol, B))
A_IIS_ = (A_II @ A_IS).reshape((B, resol*resol, B))
A_II_ = A_II.reshape((B, resol*resol, B, resol*resol))
return A_IS_, A_IIS_, A_II_
def put_text(im, text, loc, font_scale=4):
fontScale = font_scale
thickness = int(fontScale / 4)
fontColor = (0,255,255)
lineType = 4
im = cv2.putText(im, text, loc, cv2.FONT_HERSHEY_SIMPLEX, fontScale, fontColor, thickness, lineType)
return im
def im2video(save_path, frame_list, fps=5):
height, width, _ = frame_list[0].shape
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
video = cv2.VideoWriter(save_path, fourcc, fps, (width, height))
for frame in frame_list:
video.write(rgb2bgr(frame))
cv2.destroyAllWindows()
video.release()
new_name = "{}_new{}".format(save_path[:-4], save_path[-4:])
os.system("ffmpeg -v quiet -y -i \"{}\" -pix_fmt yuv420p -vcodec h264 -strict -2 -acodec aac \"{}\"".format(save_path, new_name))
os.system("rm -rf \"{}\"".format(save_path))
def get_face_landmark(frame_path_):
video_folder = Path(frame_path_).parent.parent
frame_name = frame_path_.split('/')[-1]
face_landmark_path = os.path.join(video_folder, "face_bbox_landmark.json")
if not os.path.exists(face_landmark_path):
return None
with open(face_landmark_path, 'r') as f:
face_landmark = json.load(f)
if len(face_landmark[frame_name]) == 0:
return None
b = face_landmark[frame_name][0]
return b
def make_color_wheel():
# same source as color_flow
RY = 15
YG = 6
GC = 4
CB = 11
BM = 13
MR = 6
ncols = RY + YG + GC + CB + BM + MR
#colorwheel = zeros(ncols, 3) # r g b
# matlab correction
colorwheel = np.zeros((1+ncols, 4)) # r g b
col = 0
#RY
colorwheel[1:1+RY, 1] = 255
colorwheel[1:1+RY, 2] = np.floor(255*np.arange(0, 1+RY-1)/RY).T
col = col+RY
#YG
colorwheel[col+1:col+1+YG, 1] = 255 - np.floor(255*np.arange(0,1+YG-1)/YG).T
colorwheel[col+1:col+1+YG, 2] = 255
col = col+YG
#GC
colorwheel[col+1:col+1+GC, 2] = 255
colorwheel[col+1:col+1+GC, 3] = np.floor(255*np.arange(0,1+GC-1)/GC).T
col = col+GC
#CB
colorwheel[col+1:col+1+CB, 2] = 255 - np.floor(255*np.arange(0,1+CB-1)/CB).T
colorwheel[col+1:col+1+CB, 3] = 255
col = col+CB
#BM
colorwheel[col+1:col+1+BM, 3] = 255
colorwheel[col+1:col+1+BM, 1] = np.floor(255*np.arange(0,1+BM-1)/BM).T
col = col+BM
#MR
colorwheel[col+1:col+1+MR, 3] = 255 - np.floor(255*np.arange(0,1+MR-1)/MR).T
colorwheel[col+1:col+1+MR, 1] = 255
# 1-based to 0-based indices
return colorwheel[1:, 1:]
def warp(im, flow):
# im : C x H x W
# flow : 2 x H x W, such that flow[dst_y, dst_x] = (src_x, src_y),
# where (src_x, src_y) is the pixel location we want to sample from.
# grid_sample the grid is in the range in [-1, 1]
grid = -1. + 2. * flow/(-1 + np.array([im.shape[2], im.shape[1]], np.float32))[:, None, None]
# print('grid range =', grid.min(), grid.max())
ft = torch.FloatTensor
warped = torch.nn.functional.grid_sample(
ft(im[None].astype(np.float32)),
ft(grid.transpose((1, 2, 0))[None]),
mode = 'bilinear', padding_mode = 'zeros', align_corners=True)
return warped.cpu().numpy()[0].astype(im.dtype)
def compute_color(u, v):
# from same source as color_flow; please see above comment
# nan_idx = ut.lor(np.isnan(u), np.isnan(v))
nan_idx = np.logical_or(np.isnan(u), np.isnan(v))
u[nan_idx] = 0
v[nan_idx] = 0
colorwheel = make_color_wheel()
ncols = colorwheel.shape[0]
rad = np.sqrt(u**2 + v**2)
a = np.arctan2(-v, -u)/np.pi
#fk = (a + 1)/2. * (ncols-1) + 1
fk = (a + 1)/2. * (ncols-1)
k0 = np.array(np.floor(fk), 'l')
k1 = k0 + 1
k1[k1 == ncols] = 1
f = fk - k0
im = np.zeros(u.shape + (3,))
for i in range(colorwheel.shape[1]):
tmp = colorwheel[:, i]
col0 = tmp[k0]/255.
col1 = tmp[k1]/255.
col = (1-f)*col0 + f*col1
idx = rad <= 1
col[idx] = 1 - rad[idx]*(1-col[idx])
col[np.logical_not(idx)] *= 0.75
im[:, :, i] = np.uint8(np.floor(255*col*(1-nan_idx)))
return im
def color_flow(flow, max_flow = None):
flow = flow.copy()
# based on flowToColor.m by Deqing Sun, orignally based on code by Daniel Scharstein
UNKNOWN_FLOW_THRESH = 1e9
UNKNOWN_FLOW = 1e10
height, width, nbands = flow.shape
assert nbands == 2
u, v = flow[:,:,0], flow[:,:,1]
maxu = -999.
maxv = -999.
minu = 999.
minv = 999.
maxrad = -1.
idx_unknown = np.logical_or(np.abs(u) > UNKNOWN_FLOW_THRESH, np.abs(v) > UNKNOWN_FLOW_THRESH)
u[idx_unknown] = 0
v[idx_unknown] = 0
maxu = max(maxu, np.max(u))
maxv = max(maxv, np.max(v))
minu = min(minu, np.min(u))
minv = min(minv, np.min(v))
rad = np.sqrt(u**2 + v**2)
maxrad = max(maxrad, np.max(rad))
if max_flow > 0:
maxrad = max_flow
u = u/(maxrad + np.spacing(1))
v = v/(maxrad + np.spacing(1))
im = compute_color(u, v)
im[idx_unknown] = 0
return im
def plt_fig_to_np_img(fig):
canvas = FigureCanvas(fig) # draw the canvas, cache the renderer
canvas.draw()
width, height = fig.get_size_inches() * fig.get_dpi()
image = np.fromstring(canvas.tostring_rgb(), dtype='uint8')
image = image.reshape(int(height), int(width), 3)
return image
def save_np_img(image, path):
cv2.imwrite(path, rgb2bgr(image))
def find_patch_topk_aud(mat, top_k):
top_k_ind = torch.argsort(mat, dim=-1, descending=True)[..., :top_k].squeeze()
top_k_ind = top_k_ind.reshape(-1).cpu().numpy()
return top_k_ind
def find_patch_pred_topk(mat, top_k, target):
M, N = mat.size()
labels = torch.from_numpy(target * np.ones(M)).to('cuda')
top_k_ind = torch.sum(torch.argsort(mat, dim=-1, descending=True)[..., :top_k] == labels.view(-1, 1), dim=-1).nonzero().reshape(-1)
top_k_ind = top_k_ind.reshape(-1).cpu().numpy()
return top_k_ind
def gen_masked_img(mask_ind, resol, img):
mask = torch.zeros(resol*resol)
mask = mask.scatter_(0, torch.from_numpy(mask_ind), 1.)
mask = mask.reshape(resol, resol).numpy()
img_h = img.shape[1]
img_w = img.shape[0]
mask_up = np.array(Image.fromarray(mask*255).resize((img_h, img_w), resample=PIL.Image.NEAREST))
mask_up = mask_up[..., None]
image_seg = np.uint8(img * 0.7 + mask_up * 0.3)
return image_seg
def drop_2rand_ch(patch, remain_c=0):
B, P, C, H, W = patch.shape
patch_c = patch[:, :, remain_c, :, :].unsqueeze(2)
# patch_droped = torch.zeros_like(patch)
# patch_droped[:, :, remain_c, :, :] = patch_c
c_std = torch.std(patch_c, dim=(3,4))
gauss_n = 0.5 + (0.01 * c_std.reshape(B, P, 1, 1, 1) * torch.randn(B, P, 2, H, W).to('cuda'))
patch_dropped = torch.cat([gauss_n[:, :, :remain_c], patch_c, gauss_n[:, :, remain_c:]], dim=2)
return patch_dropped
# pdb.set_trace()
def vis_patch(patch, exp_path, resol, b_step):
B, P, C, H, W = patch.shape
for i in range(B):
patch_i = patch[i].reshape(resol, resol, C, H, W)
patch_i = patch_i.permute(2, 0, 3, 1, 4)
patch_folded_i = patch_i.reshape(C, resol*H, resol*W)
patch_folded_i = (patch_folded_i * 255).cpu().numpy().astype(np.uint8).transpose(1,2,0)
cv2.imwrite('{}/{}_{}_patch_folded.jpg'.format(exp_path, str(b_step).zfill(4), str(i).zfill(4)), rgb2bgr(patch_folded_i))
def blur_patch(patch, k_size=3, sigma=0.5):
B, P, C, H, W = patch.shape
gauss = K.filters.GaussianBlur2d((k_size, k_size), (sigma, sigma))
patch = patch.reshape(B*P, C, H, W)
blur_patch = gauss(patch).reshape(B, P, C, H, W)
return blur_patch
def gray_project_patch(patch, device):
N, P, C, H, W = patch.size()
a = torch.tensor([[-1, 2, -1]]).float()
B = (torch.eye(3) - (a.T @ a) / (a @ a.T)).to(device)
patch = patch.permute(0, 1, 3, 4, 2)
patch = (patch @ B).permute(0, 1, 4, 2, 3)
return patch
def parse_color(c):
if type(c) == type((0,)) or type(c) == type(np.array([1])):
return c
elif type(c) == type(''):
return color_from_string(c)
def colors_from_input(color_input, default, n):
""" Parse color given as input argument; gives user several options """
# todo: generalize this to non-colors
expanded = None
if color_input is None:
expanded = [default] * n
elif (type(color_input) == type((1,))) and map(type, color_input) == [int, int, int]:
# expand (r, g, b) -> [(r, g, b), (r, g, b), ..]
expanded = [color_input] * n
else:
# general case: [(r1, g1, b1), (r2, g2, b2), ...]
expanded = color_input
expanded = map(parse_color, expanded)
return expanded
def draw_pts(im, points, colors = None, width = 1, texts = None):
# ut.check(colors is None or len(colors) == len(points))
points = list(points)
colors = colors_from_input(colors, (255, 0, 0), len(points))
rects = [(p[0] - width/2, p[1] - width/2, width, width) for p in points]
return draw_rects(im, rects, fills = colors, outlines = [None]*len(points), texts = texts)
def to_pil(im):
#print im.dtype
return Image.fromarray(np.uint8(im))
def from_pil(pil):
#print pil
return np.array(pil)
def draw_on(f, im):
pil = to_pil(im)
draw = ImageDraw.ImageDraw(pil)
f(draw)
return from_pil(pil)
def fail(s = ''): raise RuntimeError(s)
def check(cond, str = 'Check failed!'):
if not cond:
fail(str)
def draw_rects(im, rects, outlines = None, fills = None, texts = None, text_colors = None, line_widths = None, as_oval = False):
rects = list(rects)
outlines = colors_from_input(outlines, (0, 0, 255), len(rects))
outlines = list(outlines)
text_colors = colors_from_input(text_colors, (255, 255, 255), len(rects))
text_colors = list(text_colors)
fills = colors_from_input(fills, None, len(rects))
fills = list(fills)
if texts is None: texts = [None] * len(rects)
if line_widths is None: line_widths = [None] * len(rects)
def check_size(x, s):
check(x is None or len(list(x)) == len(rects), "%s different size from rects" % s)
check_size(outlines, 'outlines')
check_size(fills, 'fills')
check_size(texts, 'texts')
check_size(text_colors, 'texts')
def f(draw):
for (x, y, w, h), outline, fill, text, text_color, lw in zip(rects, outlines, fills, texts, text_colors, line_widths):
if lw is None:
if as_oval:
draw.ellipse((x, y, x + w, y + h), outline = outline, fill = fill)
else:
draw.rectangle((x, y, x + w, y + h), outline = outline, fill = fill)
else:
d = int(np.ceil(lw/2))
draw.rectangle((x-d, y-d, x+w+d, y+d), fill = outline)
draw.rectangle((x-d, y-d, x+d, y+h+d), fill = outline)
draw.rectangle((x+w+d, y+h+d, x-d, y+h-d), fill = outline)
draw.rectangle((x+w+d, y+h+d, x+w-d, y-d), fill = outline)
if text is not None:
# draw text inside rectangle outline
border_width = 2
draw.text((border_width + x, y), text, fill = text_color)
return draw_on(f, im)
def rand_color():
return (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255))
def int_tuple(x):
return tuple([int(v) for v in x])
itup = int_tuple
red = (255, 0, 0)
green = (0, 255, 0)
blue = (0, 0, 255)
yellow = (255, 255, 0)
purple = (255, 0, 255)
cyan = (0, 255, 255)
def stash_seed(new_seed = 0):
""" Sets the random seed to new_seed. Returns the old seed. """
if type(new_seed) == type(''):
new_seed = hash(new_seed) % 2**32
py_state = random.getstate()
random.seed(new_seed)
np_state = np.random.get_state()
np.random.seed(new_seed)
return (py_state, np_state)
def do_with_seed(f, seed = 0):
old_seed = stash_seed(seed)
res = f()
unstash_seed(old_seed[0], old_seed[1])
return res
def sample_at_most(xs, bound):
return random.sample(xs, min(bound, len(xs)))
class ColorChooser:
def __init__(self, dist_thresh = 500, attempts = 500, init_colors = [], init_pts = []):
self.pts = init_pts
self.colors = init_colors
self.attempts = attempts
self.dist_thresh = dist_thresh
def choose(self, new_pt = (0, 0)):
new_pt = np.array(new_pt)
nearby_colors = []
for pt, c in zip(self.pts, self.colors):
if np.sum((pt - new_pt)**2) <= self.dist_thresh**2:
nearby_colors.append(c)
if len(nearby_colors) == 0:
color_best = rand_color()
else:
nearby_colors = np.array(sample_at_most(nearby_colors, 100), 'l')
choices = np.array(np.random.rand(self.attempts, 3)*256, 'l')
dists = np.sqrt(np.sum((choices[:, np.newaxis, :] - nearby_colors[np.newaxis, :, :])**2, axis = 2))
costs = np.min(dists, axis = 1)
assert costs.shape == (len(choices),)
color_best = itup(choices[np.argmax(costs)])
self.pts.append(new_pt)
self.colors.append(color_best)
return color_best
def unstash_seed(py_state, np_state):
random.setstate(py_state)
np.random.set_state(np_state)
def distinct_colors(n):
#cc = ColorChooser(attempts = 10, init_colors = [red, green, blue, yellow, purple, cyan], init_pts = [(0, 0)]*6)
cc = ColorChooser(attempts = 100, init_colors = [red, green, blue, yellow, purple, cyan], init_pts = [(0, 0)]*6)
do_with_seed(lambda : [cc.choose((0,0)) for x in range(n)])
return cc.colors[:n]
def make(w, h, fill = (0,0,0)):
return np.uint8(np.tile([[fill]], (h, w, 1)))
def rgb_from_gray(img, copy = True, remove_alpha = True):
if img.ndim == 3 and img.shape[2] == 3:
return img.copy() if copy else img
elif img.ndim == 3 and img.shape[2] == 4:
return (img.copy() if copy else img)[..., :3]
elif img.ndim == 3 and img.shape[2] == 1:
return np.tile(img, (1,1,3))
elif img.ndim == 2:
return np.tile(img[:,:,np.newaxis], (1,1,3))
else:
raise RuntimeError('Cannot convert to rgb. Shape: ' + str(img.shape))
def hstack_ims(ims, bg_color = (0, 0, 0)):
max_h = max([im.shape[0] for im in ims])
result = []
for im in ims:
#frame = np.zeros((max_h, im.shape[1], 3))
frame = make(im.shape[1], max_h, bg_color)
frame[:im.shape[0],:im.shape[1]] = rgb_from_gray(im)
result.append(frame)
return np.hstack(result)
def gen_ranked_prob_map(prob_map):
prob_ranked = torch.zeros_like(prob_map)
_, index = torch.topk(prob_map, len(prob_map), largest=False)
prob_ranked[index] = torch.arange(len(prob_map)).float().cuda()
prob_ranked = prob_ranked.float() / torch.max(prob_ranked)
return prob_ranked
def get_topk_patch_mask(prob_map):
# _, index =
pass
def load_img(frame_path):
image = Image.open(frame_path).convert('RGB')
image = image.resize((256, 256), resample=PIL.Image.BILINEAR)
image = np.array(image)
img_h = image.shape[0]
img_w = image.shape[1]
return image, img_h, img_w
def plt_subp_show_img(fig, img, cols, rows, subp_index, interpolation='bilinear', aspect='auto'):
fig.add_subplot(rows, cols, subp_index)
plt.cla()
plt.axis('off')
plt.imshow(img, interpolation=interpolation, aspect=aspect)
return fig
|