File size: 23,419 Bytes
7f2690b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
import copy
import cv2
import itertools as itl
import json
import kornia as K
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
import matplotlib.pyplot as plt
import numpy as np
import os
from pathlib import Path
import PIL
from PIL import Image, ImageDraw, ImageFont
import pylab
import random

import torch

import pdb

def clip_rescale(x, lo = None, hi = None):
    if lo is None:
        lo = np.min(x)
    if hi is None:
        hi = np.max(x)
    return np.clip((x - lo)/(hi - lo), 0., 1.)

def apply_cmap(im, cmap = pylab.cm.jet, lo = None, hi = None):
    return cmap(clip_rescale(im, lo, hi).flatten()).reshape(im.shape[:2] + (-1,))[:, :, :3]

def cmap_im(cmap, im, lo = None, hi = None):
    return np.uint8(255*apply_cmap(im, cmap, lo, hi))

def calc_acc(prob, labels, k=1):
    thred = 0.5
    pred = torch.argsort(prob, dim=-1, descending=True)[..., :k]
    corr = (pred.view(-1) == labels).cpu().numpy()
    corr = corr.reshape((-1, resol*resol))
    acc = corr.sum(1) / (resol*resol)  # compute rate of successful patch for each image
    corr_index = np.where((acc > thred) == True)[0]
    return corr_index    

# def compute_acc_list(A_IS, k=0): 
#     criterion = nn.NLLLoss()
#     M, N = A_IS.size()
#     target = torch.from_numpy(np.repeat(np.eye(N), M // N, axis=0)).to(DEVICE)
#     _, labels = target.max(dim=1)
#     loss = criterion(torch.log(A_IS), labels.long())
#     acc = None
#     if k > 0:
#         corr_index = calc_acc(A_IS, labels, k)
#     return corr_index

def get_fcn_sim(full_img, feat_audio, net, B, resol, norm=True):
    feat_img = net.forward_fcn(full_img)
    feat_img = feat_img.permute(0, 2,3,1).reshape(-1, 128)
    A_II, A_IS, A_SI = net.GetAMatrix(feat_img, feat_audio, norm=norm)
    A_IS_ = A_IS.reshape((B, resol*resol, B))
    A_IIS_ = (A_II @ A_IS).reshape((B, resol*resol, B))
    A_II_ = A_II.reshape((B, resol*resol, B*resol*resol))

    return A_IS_, A_IIS_, A_II_

def upsample_lowest(sim, im_h, im_w, pr): 
    sim_h, sim_w = sim.shape
    prob_map_per_patch = np.zeros((im_h, im_w, pr.resol*pr.resol))
    # pdb.set_trace()
    for i in range(pr.resol): 
        for j in range(pr.resol): 
            y1 = pr.patch_stride * i 
            y2 = pr.patch_stride * i + pr.psize
            x1 = pr.patch_stride * j
            x2 = pr.patch_stride * j + pr.psize
            prob_map_per_patch[y1:y2, x1:x2, i * pr.resol + j] = sim[i, j]
    # pdb.set_trace()
    upsampled = np.sum(prob_map_per_patch, axis=-1) / np.sum(prob_map_per_patch > 0, axis=-1)

    return upsampled


def grid_interp(pr, input, output_size, mode='bilinear'):
    # import pdb; pdb.set_trace()
    n = 1
    c = 1
    ih, iw = input.shape
    input = input.view(n, c, ih, iw)
    oh, ow = output_size

    pad = (pr.psize - pr.patch_stride) // 2 
    ch = oh - pad * 2 
    cw = ow - pad * 2
    # normalize to [-1, 1]
    h = (torch.arange(0, oh) - pad) / (ch-1) * 2 - 1
    w = (torch.arange(0, ow) - pad) / (cw-1) * 2 - 1

    grid = torch.zeros(oh, ow, 2)
    grid[:, :, 0] = w.unsqueeze(0).repeat(oh, 1)
    grid[:, :, 1] = h.unsqueeze(0).repeat(ow, 1).transpose(0, 1)
    grid = grid.unsqueeze(0).repeat(n, 1, 1, 1) # grid.shape: [n, oh, ow, 2]
    grid = grid.to(input.device)
    res = torch.nn.functional.grid_sample(input, grid, mode=mode, padding_mode="border", align_corners=False).squeeze()
    return res 


def upsample_lowest_torch(sim, im_h, im_w, pr): 
    sim = sim.reshape(pr.resol*pr.resol)
    # precompute the temeplate
    prob_map_per_patch = torch.from_numpy(pr.template).to('cuda')
    prob_map_per_patch = prob_map_per_patch * sim.reshape(1,1,-1)
    upsampled = torch.sum(prob_map_per_patch, dim=-1) / torch.sum(prob_map_per_patch > 0, dim=-1)

    return upsampled


def gen_vis_map(prob, im_h, im_w, pr, bound=False, lo=0, hi=0.3, mode='nearest'): 
    """
    prob: probability map for patches
    im_h, im_w: original image size
    resol: resolution of patches
    bound: whether to give low and high bound for probability
    lo: 
    hi: 
    mode: upsample method for probability
    """
    resol = pr.resol
    if mode == 'nearest': 
        resample = PIL.Image.NEAREST
    elif mode == 'bilinear': 
        resample = PIL.Image.BILINEAR
    sim = prob.reshape((resol, resol))
    # pdb.set_trace()
    # updample similarity
    if mode in ['nearest', 'bilinear']: 
        if torch.is_tensor(sim): 
            sim = sim.cpu().numpy()
        sim_up = np.array(Image.fromarray(sim).resize((im_w, im_h), resample=resample))
    elif mode == 'lowest': 
        sim_up = upsample_lowest_torch(sim, im_w, im_h, pr)
        sim_up = sim_up.detach().cpu().numpy()
    elif mode == 'grid': 
        sim_up = grid_interp(pr, sim, (im_h, im_w), 'bilinear')
        sim_up = sim_up.detach().cpu().numpy()

    if not bound: 
        lo = None
        hi = None
    # generate heat map
    # pdb.set_trace()
    vis = cmap_im(pylab.cm.jet, sim_up, lo=lo, hi=hi)

    # p weights the cmap on original image
    p = sim_up / sim_up.max() * 0.3 + 0.3
    p = p[..., None]
    
    return p, vis


def gen_upsampled_prob(prob, im_h, im_w, pr, bound=False, lo=0, hi=0.3, mode='nearest'): 
    """
    prob: probability map for patches
    im_h, im_w: original image size
    resol: resolution of patches
    bound: whether to give low and high bound for probability
    lo: 
    hi: 
    mode: upsample method for probability
    """
    resol = pr.resol
    if mode == 'nearest': 
        resample = PIL.Image.NEAREST
    elif mode == 'bilinear': 
        resample = PIL.Image.BILINEAR
    sim = prob.reshape((resol, resol))
    # pdb.set_trace()
    # updample similarity
    if mode in ['nearest', 'bilinear']: 
        if torch.is_tensor(sim): 
            sim = sim.cpu().numpy()
        sim_up = np.array(Image.fromarray(sim).resize((im_w, im_h), resample=resample))
    elif mode == 'lowest': 
        sim_up = upsample_lowest_torch(sim, im_w, im_h, pr)
        sim_up = sim_up.cpu().numpy()
    sim_up = sim_up / sim_up.max()
    return sim_up


def gen_vis_map_probmap_up(prob_up, bound=False, lo=0, hi=0.3, mode='nearest'): 
    if mode == 'nearest': 
        resample = PIL.Image.NEAREST
    elif mode == 'bilinear': 
        resample = PIL.Image.BILINEAR
    if not bound: 
        lo = None
        hi = None
    vis = cmap_im(pylab.cm.jet, prob_up, lo=None, hi=None)
    if bound: 
        # when hi gets larger, cmap becomes less visibal
        p = prob_up / prob_up.max() * (0.3+0.4*(1-hi)) + 0.3
    else: 
        # if not bound, cmap always weights 0.3 on original image
        p = prob_up / prob_up.max() * 0.3 + 0.3
    p = p[..., None]
    
    return p, vis


def rgb2bgr(im): 
    return cv2.cvtColor(im, cv2.COLOR_RGB2BGR)

def gen_bbox_patches(im, patch_ind, resol, patch_size=64, lin_w=3, lin_color=np.array([255,0,0])): 
    # TODO: make it work for different image size
    stride = int((256-patch_size)/(resol-1))
    
    im_w, im_h = im.shape[1], im.shape[0]

    r_ind = patch_ind // resol
    c_ind = patch_ind % resol
    y1 = r_ind * stride
    y2 = r_ind * stride + patch_size
    x1 = c_ind * stride
    x2 = c_ind * stride + patch_size

    im_bbox = copy.deepcopy(im)
    im_bbox[y1:y1+lin_w, x1:x2, :] = lin_color
    im_bbox[y2-lin_w:y2, x1:x2, :] = lin_color
    im_bbox[y1:y2, x1:x1+lin_w, :] = lin_color
    im_bbox[y1:y2, x2-lin_w:x2, :] = lin_color
    
    return (x1, y1, x2-x1, y2-y1), im_bbox 

def get_fcn_sim(full_img, feat_audio, net, B, resol, norm=True):
    feat_img = net.forward_fcn(full_img)
    feat_img = feat_img.permute(0, 2,3,1).reshape(-1, 128)
    A_II, A_IS, A_SI = net.GetAMatrix(feat_img, feat_audio, norm=norm)
    A_IS_ = A_IS.reshape((B, resol*resol, B))
    A_IIS_ = (A_II @ A_IS).reshape((B, resol*resol, B))
    A_II_ = A_II.reshape((B, resol*resol, B, resol*resol))
    return A_IS_, A_IIS_, A_II_

def put_text(im, text, loc, font_scale=4): 
    fontScale = font_scale
    thickness = int(fontScale / 4)
    fontColor = (0,255,255)
    lineType = 4
    im = cv2.putText(im, text, loc, cv2.FONT_HERSHEY_SIMPLEX, fontScale, fontColor, thickness, lineType)
    return im

def im2video(save_path, frame_list, fps=5): 
    height, width, _ = frame_list[0].shape
    fourcc = cv2.VideoWriter_fourcc(*'mp4v') 
    video = cv2.VideoWriter(save_path, fourcc, fps, (width, height))
    
    for frame in frame_list: 
        video.write(rgb2bgr(frame))

    cv2.destroyAllWindows()
    video.release()
    new_name = "{}_new{}".format(save_path[:-4], save_path[-4:])
    os.system("ffmpeg -v quiet -y -i \"{}\" -pix_fmt yuv420p -vcodec h264 -strict -2 -acodec aac \"{}\"".format(save_path, new_name))
    os.system("rm -rf \"{}\"".format(save_path))

def get_face_landmark(frame_path_): 
    video_folder = Path(frame_path_).parent.parent
    frame_name = frame_path_.split('/')[-1]
    face_landmark_path = os.path.join(video_folder, "face_bbox_landmark.json")
    if not os.path.exists(face_landmark_path): 
        return None
    with open(face_landmark_path, 'r') as f:
        face_landmark = json.load(f)
    if len(face_landmark[frame_name]) == 0: 
        return None
    b = face_landmark[frame_name][0]
    return b

def make_color_wheel():
    # same source as color_flow

    RY = 15
    YG = 6
    GC = 4
    CB = 11
    BM = 13
    MR = 6

    ncols = RY + YG + GC + CB + BM + MR

    #colorwheel = zeros(ncols, 3) # r g b
    # matlab correction
    colorwheel = np.zeros((1+ncols, 4)) # r g b

    col = 0
    #RY
    colorwheel[1:1+RY, 1] = 255
    colorwheel[1:1+RY, 2] = np.floor(255*np.arange(0, 1+RY-1)/RY).T
    col = col+RY

    #YG
    colorwheel[col+1:col+1+YG, 1] = 255 - np.floor(255*np.arange(0,1+YG-1)/YG).T
    colorwheel[col+1:col+1+YG, 2] = 255
    col = col+YG

    #GC
    colorwheel[col+1:col+1+GC, 2] = 255
    colorwheel[col+1:col+1+GC, 3] = np.floor(255*np.arange(0,1+GC-1)/GC).T
    col = col+GC

    #CB
    colorwheel[col+1:col+1+CB, 2] = 255 - np.floor(255*np.arange(0,1+CB-1)/CB).T
    colorwheel[col+1:col+1+CB, 3] = 255
    col = col+CB

    #BM
    colorwheel[col+1:col+1+BM, 3] = 255
    colorwheel[col+1:col+1+BM, 1] = np.floor(255*np.arange(0,1+BM-1)/BM).T
    col = col+BM

    #MR
    colorwheel[col+1:col+1+MR, 3] = 255 - np.floor(255*np.arange(0,1+MR-1)/MR).T
    colorwheel[col+1:col+1+MR, 1] = 255  

    # 1-based to 0-based indices
    return colorwheel[1:, 1:]

def warp(im, flow): 
    # im : C x H x W
    # flow : 2 x H x W, such that flow[dst_y, dst_x] = (src_x, src_y),
    #     where (src_x, src_y) is the pixel location we want to sample from.

    # grid_sample the grid is in the range in [-1, 1] 
    grid =  -1. + 2. * flow/(-1 + np.array([im.shape[2], im.shape[1]], np.float32))[:, None, None]

    # print('grid range =', grid.min(), grid.max())
    ft = torch.FloatTensor
    warped = torch.nn.functional.grid_sample(
        ft(im[None].astype(np.float32)), 
        ft(grid.transpose((1, 2, 0))[None]), 
        mode = 'bilinear', padding_mode = 'zeros', align_corners=True)
    return warped.cpu().numpy()[0].astype(im.dtype)

def compute_color(u, v):
    # from same source as color_flow; please see above comment
    # nan_idx = ut.lor(np.isnan(u), np.isnan(v))
    nan_idx = np.logical_or(np.isnan(u), np.isnan(v))
    u[nan_idx] = 0
    v[nan_idx] = 0
    colorwheel = make_color_wheel()
    ncols = colorwheel.shape[0]
    
    rad = np.sqrt(u**2 + v**2)

    a = np.arctan2(-v, -u)/np.pi
    
    #fk = (a + 1)/2. * (ncols-1) + 1
    fk = (a + 1)/2. * (ncols-1)

    k0 = np.array(np.floor(fk), 'l')

    k1 = k0 + 1
    k1[k1 == ncols] = 1

    f = fk - k0

    im = np.zeros(u.shape + (3,))
    
    for i in range(colorwheel.shape[1]):
        tmp = colorwheel[:, i]
        col0 = tmp[k0]/255.
        col1 = tmp[k1]/255.
        col = (1-f)*col0 + f*col1

        idx = rad <= 1
        col[idx] = 1 - rad[idx]*(1-col[idx])
        col[np.logical_not(idx)] *= 0.75
        im[:, :, i] = np.uint8(np.floor(255*col*(1-nan_idx)))

    return im

def color_flow(flow, max_flow = None):
    flow = flow.copy()
    # based on flowToColor.m by Deqing Sun, orignally based on code by Daniel Scharstein
    UNKNOWN_FLOW_THRESH = 1e9
    UNKNOWN_FLOW = 1e10
    height, width, nbands = flow.shape
    assert nbands == 2
    u, v = flow[:,:,0], flow[:,:,1]
    maxu = -999.
    maxv = -999.
    minu = 999.
    minv = 999.
    maxrad = -1.

    idx_unknown = np.logical_or(np.abs(u) > UNKNOWN_FLOW_THRESH,  np.abs(v) > UNKNOWN_FLOW_THRESH)
    u[idx_unknown] = 0
    v[idx_unknown] = 0
    
    maxu = max(maxu, np.max(u))
    maxv = max(maxv, np.max(v))
    
    minu = min(minu, np.min(u))
    minv = min(minv, np.min(v))

    rad = np.sqrt(u**2 + v**2)
    maxrad = max(maxrad, np.max(rad))

    if max_flow > 0:
        maxrad = max_flow

    u = u/(maxrad + np.spacing(1))
    v = v/(maxrad + np.spacing(1))
    
    im = compute_color(u, v)
    im[idx_unknown] = 0
    return im

def plt_fig_to_np_img(fig): 
    canvas = FigureCanvas(fig)  # draw the canvas, cache the renderer
    canvas.draw() 
    width, height = fig.get_size_inches() * fig.get_dpi()
    image = np.fromstring(canvas.tostring_rgb(), dtype='uint8')
    image = image.reshape(int(height), int(width), 3)

    return image

def save_np_img(image, path): 
    cv2.imwrite(path, rgb2bgr(image))

def find_patch_topk_aud(mat, top_k): 
    top_k_ind = torch.argsort(mat, dim=-1, descending=True)[..., :top_k].squeeze()
    top_k_ind = top_k_ind.reshape(-1).cpu().numpy()
    return top_k_ind

def find_patch_pred_topk(mat, top_k, target): 
    M, N = mat.size()
    labels = torch.from_numpy(target * np.ones(M)).to('cuda')
    top_k_ind = torch.sum(torch.argsort(mat, dim=-1, descending=True)[..., :top_k] == labels.view(-1, 1), dim=-1).nonzero().reshape(-1)
    top_k_ind  = top_k_ind.reshape(-1).cpu().numpy()
    return top_k_ind

def gen_masked_img(mask_ind, resol, img): 
    mask = torch.zeros(resol*resol)
    mask = mask.scatter_(0, torch.from_numpy(mask_ind), 1.)
    mask = mask.reshape(resol, resol).numpy()
    img_h = img.shape[1]
    img_w = img.shape[0]
    mask_up = np.array(Image.fromarray(mask*255).resize((img_h, img_w), resample=PIL.Image.NEAREST))
    mask_up = mask_up[..., None]
    image_seg = np.uint8(img * 0.7 + mask_up * 0.3)
    
    return image_seg

def drop_2rand_ch(patch, remain_c=0): 
    B, P, C, H, W = patch.shape
    patch_c = patch[:, :, remain_c, :, :].unsqueeze(2)
    # patch_droped = torch.zeros_like(patch)
    # patch_droped[:, :, remain_c, :, :] = patch_c
    c_std = torch.std(patch_c, dim=(3,4))
    gauss_n = 0.5 + (0.01 * c_std.reshape(B, P, 1, 1, 1) * torch.randn(B, P, 2, H, W).to('cuda'))
    
    patch_dropped = torch.cat([gauss_n[:, :, :remain_c], patch_c, gauss_n[:, :, remain_c:]], dim=2)
    
    return patch_dropped
    # pdb.set_trace()

def vis_patch(patch, exp_path, resol, b_step): 
    B, P, C, H, W = patch.shape
    for i in range(B): 
        patch_i = patch[i].reshape(resol, resol, C, H, W)
        patch_i = patch_i.permute(2, 0, 3, 1, 4)
        patch_folded_i = patch_i.reshape(C, resol*H, resol*W)
        patch_folded_i = (patch_folded_i * 255).cpu().numpy().astype(np.uint8).transpose(1,2,0)
        cv2.imwrite('{}/{}_{}_patch_folded.jpg'.format(exp_path, str(b_step).zfill(4), str(i).zfill(4)), rgb2bgr(patch_folded_i))

def blur_patch(patch, k_size=3, sigma=0.5): 
    B, P, C, H, W = patch.shape
    gauss = K.filters.GaussianBlur2d((k_size, k_size), (sigma, sigma))
    patch = patch.reshape(B*P, C, H, W)
    blur_patch = gauss(patch).reshape(B, P, C, H, W)
    return blur_patch

def gray_project_patch(patch, device):
    N, P, C, H, W = patch.size()
    a = torch.tensor([[-1, 2, -1]]).float()
    B = (torch.eye(3) - (a.T @ a) / (a @ a.T)).to(device)
    patch = patch.permute(0, 1, 3, 4, 2)
    patch = (patch @ B).permute(0, 1, 4, 2, 3)
    return patch

def parse_color(c):
    if type(c) == type((0,)) or type(c) == type(np.array([1])):
        return c
    elif type(c) == type(''):
        return color_from_string(c)

def colors_from_input(color_input, default, n):
    """ Parse color given as input argument; gives user several options """
    # todo: generalize this to non-colors
    expanded = None
    if color_input is None:
        expanded = [default] * n
    elif (type(color_input) == type((1,))) and map(type, color_input) == [int, int, int]:
        # expand (r, g, b) -> [(r, g, b), (r, g, b), ..]
        expanded = [color_input] * n
    else:
        # general case: [(r1, g1, b1), (r2, g2, b2), ...]
        expanded = color_input

    expanded = map(parse_color, expanded)
    return expanded

def draw_pts(im, points, colors = None, width = 1, texts = None):
    # ut.check(colors is None or len(colors) == len(points))
    points = list(points)
    colors = colors_from_input(colors, (255, 0, 0), len(points))
    rects = [(p[0] - width/2, p[1] - width/2, width, width) for p in points]
    return draw_rects(im, rects, fills = colors, outlines = [None]*len(points), texts = texts)

def to_pil(im): 
    #print im.dtype
    return Image.fromarray(np.uint8(im))

def from_pil(pil): 
  #print pil
  return np.array(pil)

def draw_on(f, im):
    pil = to_pil(im)
    draw = ImageDraw.ImageDraw(pil)
    f(draw)
    return from_pil(pil)

def fail(s = ''): raise RuntimeError(s)

def check(cond, str = 'Check failed!'):
    if not cond:
        fail(str)

def draw_rects(im, rects, outlines = None, fills = None, texts = None, text_colors = None, line_widths = None, as_oval = False):
    rects = list(rects)
    outlines = colors_from_input(outlines, (0, 0, 255), len(rects))
    outlines = list(outlines)
    text_colors = colors_from_input(text_colors, (255, 255, 255), len(rects))
    text_colors = list(text_colors)
    fills = colors_from_input(fills, None, len(rects))
    fills = list(fills)
    
    if texts is None: texts = [None] * len(rects)
    if line_widths is None: line_widths = [None] * len(rects)
    
    def check_size(x, s): 
        check(x is None or len(list(x)) == len(rects), "%s different size from rects" % s)
    check_size(outlines, 'outlines')
    check_size(fills, 'fills')
    check_size(texts, 'texts')
    check_size(text_colors, 'texts')
    
    def f(draw):
        for (x, y, w, h), outline, fill, text, text_color, lw in zip(rects, outlines, fills, texts, text_colors, line_widths):
            if lw is None:
                if as_oval:
                    draw.ellipse((x, y, x + w, y + h), outline = outline, fill = fill)
                else:
                    draw.rectangle((x, y, x + w, y + h), outline = outline, fill = fill)
            else:
                d = int(np.ceil(lw/2))
                draw.rectangle((x-d, y-d, x+w+d, y+d), fill = outline)
                draw.rectangle((x-d, y-d, x+d, y+h+d), fill = outline)
                
                draw.rectangle((x+w+d, y+h+d, x-d, y+h-d), fill = outline)
                draw.rectangle((x+w+d, y+h+d, x+w-d, y-d), fill = outline)
                
            if text is not None:
                # draw text inside rectangle outline
                border_width = 2
                draw.text((border_width + x, y), text, fill = text_color)
    return draw_on(f, im)

def rand_color():
    return (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255))

def int_tuple(x): 
    return tuple([int(v) for v in x])

itup = int_tuple

red = (255, 0, 0)
green = (0, 255, 0)
blue = (0, 0, 255)
yellow = (255, 255, 0)
purple = (255, 0, 255)
cyan = (0, 255, 255)


def stash_seed(new_seed = 0):
    """ Sets the random seed to new_seed. Returns the old seed. """
    if type(new_seed) == type(''):
        new_seed = hash(new_seed) % 2**32

    py_state = random.getstate()
    random.seed(new_seed)

    np_state = np.random.get_state()
    np.random.seed(new_seed)
    return (py_state, np_state)


def do_with_seed(f, seed = 0):
    old_seed = stash_seed(seed)
    res = f()
    unstash_seed(old_seed[0], old_seed[1])
    return res

def sample_at_most(xs, bound):
    return random.sample(xs, min(bound, len(xs)))

class ColorChooser:
    def __init__(self, dist_thresh = 500, attempts = 500, init_colors = [], init_pts = []):
        self.pts = init_pts
        self.colors = init_colors
        self.attempts = attempts
        self.dist_thresh = dist_thresh

    def choose(self, new_pt = (0, 0)):
        new_pt = np.array(new_pt)
        nearby_colors = []
        for pt, c in zip(self.pts, self.colors):
            if np.sum((pt - new_pt)**2) <= self.dist_thresh**2:
                nearby_colors.append(c)

        if len(nearby_colors) == 0:
            color_best = rand_color()
        else:
            nearby_colors = np.array(sample_at_most(nearby_colors, 100), 'l')
            choices = np.array(np.random.rand(self.attempts, 3)*256, 'l')
            dists = np.sqrt(np.sum((choices[:, np.newaxis, :] - nearby_colors[np.newaxis, :, :])**2, axis = 2))
            costs = np.min(dists, axis = 1)
        assert costs.shape == (len(choices),)
        color_best = itup(choices[np.argmax(costs)])

        self.pts.append(new_pt)
        self.colors.append(color_best)
        return color_best

def unstash_seed(py_state, np_state):
    random.setstate(py_state)
    np.random.set_state(np_state)

def distinct_colors(n):
    #cc = ColorChooser(attempts = 10, init_colors = [red, green, blue, yellow, purple, cyan], init_pts = [(0, 0)]*6)
    cc = ColorChooser(attempts = 100, init_colors = [red, green, blue, yellow, purple, cyan], init_pts = [(0, 0)]*6)
    do_with_seed(lambda : [cc.choose((0,0)) for x in range(n)])
    return cc.colors[:n]

def make(w, h, fill = (0,0,0)):
    return np.uint8(np.tile([[fill]], (h, w, 1)))

def rgb_from_gray(img, copy = True, remove_alpha = True):
    if img.ndim == 3 and img.shape[2] == 3:
        return img.copy() if copy else img
    elif img.ndim == 3 and img.shape[2] == 4:
        return (img.copy() if copy else img)[..., :3]
    elif img.ndim == 3 and img.shape[2] == 1:
        return np.tile(img, (1,1,3))
    elif img.ndim == 2:
        return np.tile(img[:,:,np.newaxis], (1,1,3))
    else:
        raise RuntimeError('Cannot convert to rgb. Shape: ' + str(img.shape))

def hstack_ims(ims, bg_color = (0, 0, 0)):
    max_h = max([im.shape[0] for im in ims])
    result = []
    for im in ims:
        #frame = np.zeros((max_h, im.shape[1], 3))
        frame = make(im.shape[1], max_h, bg_color)
        frame[:im.shape[0],:im.shape[1]] = rgb_from_gray(im)
        result.append(frame)
    return np.hstack(result)

def gen_ranked_prob_map(prob_map): 
    prob_ranked = torch.zeros_like(prob_map)
    _, index = torch.topk(prob_map, len(prob_map), largest=False)
    prob_ranked[index] = torch.arange(len(prob_map)).float().cuda()
    prob_ranked = prob_ranked.float() / torch.max(prob_ranked)
    return prob_ranked

def get_topk_patch_mask(prob_map): 
    # _, index = 
    pass

def load_img(frame_path): 
    image = Image.open(frame_path).convert('RGB')
    image = image.resize((256, 256), resample=PIL.Image.BILINEAR)
    image = np.array(image)

    img_h = image.shape[0]
    img_w = image.shape[1]

    return image, img_h, img_w

def plt_subp_show_img(fig, img, cols, rows, subp_index, interpolation='bilinear', aspect='auto'): 
    fig.add_subplot(rows, cols, subp_index)
    plt.cla()
    plt.axis('off')
    plt.imshow(img, interpolation=interpolation, aspect=aspect)
    return fig