Spaces:
Running
Running
import argparse | |
import logging | |
import os | |
import re | |
import subprocess | |
import gradio.processing_utils as gr_pu | |
import gradio as gr | |
import librosa | |
import numpy as np | |
import soundfile | |
from scipy.io import wavfile | |
from inference.infer_tool import Svc | |
logging.getLogger('numba').setLevel(logging.WARNING) | |
logging.getLogger('markdown_it').setLevel(logging.WARNING) | |
logging.getLogger('urllib3').setLevel(logging.WARNING) | |
logging.getLogger('matplotlib').setLevel(logging.WARNING) | |
sampling_rate = 44100 | |
def create_fn(model, spk): | |
def svc_fn(input_audio, vc_transform, auto_f0, f0p): | |
if input_audio is None: | |
return 0, None | |
sr, audio = input_audio | |
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32) | |
if len(audio.shape) > 1: | |
audio = librosa.to_mono(audio.transpose(1, 0)) | |
temp_path = "temp.wav" | |
soundfile.write(temp_path, audio, sr, format="wav") | |
out_audio = model.slice_inference(raw_audio_path=temp_path, | |
spk=spk, | |
slice_db=-40, | |
cluster_infer_ratio=0, | |
noice_scale=0.4, | |
clip_seconds=20, | |
tran=vc_transform, | |
f0_predictor=f0p, | |
auto_predict_f0=auto_f0) | |
os.remove(temp_path) | |
return sr, out_audio | |
def tts_fn(input_text, gender, tts_rate, vc_transform, auto_f0, f0p): | |
if input_text == '': | |
return 0, None | |
input_text = re.sub(r"[\n\,\(\) ]", "", input_text) | |
voice = "zh-CN-XiaoyiNeural" if gender == '女' else "zh-CN-YunxiNeural" | |
ratestr = "+{:.0%}".format(tts_rate) if tts_rate >= 0 else "{:.0%}".format(tts_rate) | |
temp_path = "temp.wav" | |
p = subprocess.Popen("edge-tts " + | |
" --text " + input_text + | |
" --write-media " + temp_path + | |
" --voice " + voice + | |
" --rate=" + ratestr, shell=True, | |
stdout=subprocess.PIPE, | |
stdin=subprocess.PIPE) | |
p.wait() | |
audio, sr = librosa.load(temp_path) | |
audio = librosa.resample(audio, orig_sr=sr, target_sr=sampling_rate) | |
os.remove(temp_path) | |
temp_path = "temp.wav" | |
wavfile.write(temp_path, sampling_rate, (audio * np.iinfo(np.int16).max).astype(np.int16)) | |
sr, audio = gr_pu.audio_from_file(temp_path) | |
input_audio = (sr, audio) | |
return svc_fn(input_audio, vc_transform, auto_f0, f0p) | |
return svc_fn, tts_fn | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--device', type=str, default='cpu') | |
parser.add_argument('--api', action="store_true", default=False) | |
parser.add_argument("--share", action="store_true", default=False, help="share gradio app") | |
args = parser.parse_args() | |
models = [] | |
for f in os.listdir("models"): | |
name = f | |
model = Svc(fr"models/{f}/{f}.pth", f"models/{f}/config_{f}.json", device=args.device) | |
cover = f"models/{f}/cover.png" if os.path.exists(f"models/{f}/cover.png") else None | |
models.append((name, cover, create_fn(model, name))) | |
with gr.Blocks() as app: | |
gr.Markdown( | |
"# <center> GTASA人物语音生成\n" | |
"## <center> 模型作者:B站Cyber蝈蝈总\n" | |
"<center> 使用此处资源创作的作品,请显著标明出处(B站Cyber蝈蝈总)\n" | |
) | |
with gr.Tabs(): | |
for (name, cover, (svc_fn, tts_fn)) in models: | |
with gr.TabItem(name): | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
vc_transform = gr.Number(label="音高调整 (正负半音,12为1个八度)", value=0) | |
f0_predictor = gr.Radio(label="f0预测器 (对电音有影响)", | |
choices=['crepe', 'harvest', 'dio', 'pm'], value='crepe') | |
auto_f0 = gr.Checkbox(label="自动音高预测 (文本转语音或正常说话可选,唱歌会导致跑调)", | |
value=False) | |
with gr.Tabs(): | |
with gr.TabItem('语音转语音'): | |
svc_input = gr.Audio( | |
label="上传干声 (已支持无限长音频,处理时间约为原音频时间的5倍)") | |
svc_submit = gr.Button("生成", variant="primary") | |
with gr.TabItem('文本转语音'): | |
gr.Markdown("<center>调用了外部服务,有可能超时报错,可以多试几次") | |
tts_input = gr.Textbox(label='说话内容', value='', | |
placeholder='已支持无限长内容,处理时间约为说完原内容时间的5倍') | |
with gr.Row(): | |
gender = gr.Radio(label='说话人性别 (男音调低,女音调高)', value='男', | |
choices=['男', '女']) | |
tts_rate = gr.Number(label='语速 (正负, 单位百分比)', value=0) | |
tts_submit = gr.Button("生成", variant="primary") | |
with gr.Column(): | |
gr.Markdown( | |
'<div align="center">' | |
f'<img style="width:auto;height:400px;" src="file/{cover}">' if cover else "" | |
'</div>' | |
) | |
vc_output = gr.Audio(label="输出音频") | |
svc_submit.click(svc_fn, [svc_input, vc_transform, auto_f0, f0_predictor], | |
vc_output) | |
tts_submit.click(tts_fn, | |
[tts_input, gender, tts_rate, vc_transform, auto_f0, | |
f0_predictor], | |
vc_output) | |
app.queue(concurrency_count=1, api_open=args.api).launch(share=args.share) | |