Spaces:
Running
Running
Katock
commited on
Commit
·
6052830
1
Parent(s):
b8a3545
update
Browse files- LICENSE +0 -21
- app-slice.py +0 -135
- app.py +0 -1
- data_utils.py +0 -184
- utils.py +6 -11
LICENSE
DELETED
@@ -1,21 +0,0 @@
|
|
1 |
-
MIT License
|
2 |
-
|
3 |
-
Copyright (c) 2021 Jingyi Li
|
4 |
-
|
5 |
-
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
-
of this software and associated documentation files (the "Software"), to deal
|
7 |
-
in the Software without restriction, including without limitation the rights
|
8 |
-
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
-
copies of the Software, and to permit persons to whom the Software is
|
10 |
-
furnished to do so, subject to the following conditions:
|
11 |
-
|
12 |
-
The above copyright notice and this permission notice shall be included in all
|
13 |
-
copies or substantial portions of the Software.
|
14 |
-
|
15 |
-
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
-
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
-
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
-
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
-
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
-
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
-
SOFTWARE.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app-slice.py
DELETED
@@ -1,135 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import gradio as gr
|
3 |
-
import edge_tts
|
4 |
-
from pathlib import Path
|
5 |
-
import inference.infer_tool as infer_tool
|
6 |
-
import utils
|
7 |
-
from inference.infer_tool import Svc
|
8 |
-
import logging
|
9 |
-
import webbrowser
|
10 |
-
import argparse
|
11 |
-
import asyncio
|
12 |
-
import librosa
|
13 |
-
import soundfile
|
14 |
-
import gradio.processing_utils as gr_processing_utils
|
15 |
-
logging.getLogger('numba').setLevel(logging.WARNING)
|
16 |
-
logging.getLogger('markdown_it').setLevel(logging.WARNING)
|
17 |
-
logging.getLogger('urllib3').setLevel(logging.WARNING)
|
18 |
-
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
19 |
-
|
20 |
-
limitation = os.getenv("SYSTEM") == "spaces" # limit audio length in huggingface spaces
|
21 |
-
|
22 |
-
audio_postprocess_ori = gr.Audio.postprocess
|
23 |
-
|
24 |
-
def audio_postprocess(self, y):
|
25 |
-
data = audio_postprocess_ori(self, y)
|
26 |
-
if data is None:
|
27 |
-
return None
|
28 |
-
return gr_processing_utils.encode_url_or_file_to_base64(data["name"])
|
29 |
-
|
30 |
-
|
31 |
-
gr.Audio.postprocess = audio_postprocess
|
32 |
-
def create_vc_fn(model, sid):
|
33 |
-
def vc_fn(input_audio, vc_transform, auto_f0, slice_db, noise_scale, pad_seconds, tts_text, tts_voice, tts_mode):
|
34 |
-
if tts_mode:
|
35 |
-
if len(tts_text) > 100 and limitation:
|
36 |
-
return "Text is too long", None
|
37 |
-
if tts_text is None or tts_voice is None:
|
38 |
-
return "You need to enter text and select a voice", None
|
39 |
-
asyncio.run(edge_tts.Communicate(tts_text, "-".join(tts_voice.split('-')[:-1])).save("tts.mp3"))
|
40 |
-
audio, sr = librosa.load("tts.mp3")
|
41 |
-
soundfile.write("tts.wav", audio, 24000, format="wav")
|
42 |
-
wav_path = "tts.wav"
|
43 |
-
else:
|
44 |
-
if input_audio is None:
|
45 |
-
return "You need to select an audio", None
|
46 |
-
raw_audio_path = f"raw/{input_audio}"
|
47 |
-
if "." not in raw_audio_path:
|
48 |
-
raw_audio_path += ".wav"
|
49 |
-
infer_tool.format_wav(raw_audio_path)
|
50 |
-
wav_path = Path(raw_audio_path).with_suffix('.wav')
|
51 |
-
_audio = model.slice_inference(
|
52 |
-
wav_path, sid, vc_transform, slice_db,
|
53 |
-
cluster_infer_ratio=0,
|
54 |
-
auto_predict_f0=auto_f0,
|
55 |
-
noice_scale=noise_scale,
|
56 |
-
pad_seconds=pad_seconds)
|
57 |
-
model.clear_empty()
|
58 |
-
return "Success", (44100, _audio)
|
59 |
-
return vc_fn
|
60 |
-
|
61 |
-
def refresh_raw_wav():
|
62 |
-
return gr.Dropdown.update(choices=os.listdir("raw"))
|
63 |
-
|
64 |
-
def change_to_tts_mode(tts_mode):
|
65 |
-
if tts_mode:
|
66 |
-
return gr.Audio.update(visible=False), gr.Button.update(visible=False), gr.Textbox.update(visible=True), gr.Dropdown.update(visible=True)
|
67 |
-
else:
|
68 |
-
return gr.Audio.update(visible=True), gr.Button.update(visible=True), gr.Textbox.update(visible=False), gr.Dropdown.update(visible=False)
|
69 |
-
|
70 |
-
if __name__ == '__main__':
|
71 |
-
parser = argparse.ArgumentParser()
|
72 |
-
parser.add_argument('--device', type=str, default='cpu')
|
73 |
-
parser.add_argument('--api', action="store_true", default=False)
|
74 |
-
parser.add_argument("--share", action="store_true", default=False, help="share gradio app")
|
75 |
-
parser.add_argument("--colab", action="store_true", default=False, help="share gradio app")
|
76 |
-
args = parser.parse_args()
|
77 |
-
hubert_model = utils.get_hubert_model().to(args.device)
|
78 |
-
models = []
|
79 |
-
voices = []
|
80 |
-
tts_voice_list = asyncio.get_event_loop().run_until_complete(edge_tts.list_voices())
|
81 |
-
for r in tts_voice_list:
|
82 |
-
voices.append(f"{r['ShortName']}-{r['Gender']}")
|
83 |
-
raw = os.listdir("raw")
|
84 |
-
for f in os.listdir("models"):
|
85 |
-
name = f
|
86 |
-
model = Svc(fr"models/{f}/{f}.pth", f"models/{f}/config.json", device=args.device)
|
87 |
-
cover = f"models/{f}/cover.png" if os.path.exists(f"models/{f}/cover.png") else None
|
88 |
-
models.append((name, cover, create_vc_fn(model, name)))
|
89 |
-
with gr.Blocks() as app:
|
90 |
-
gr.Markdown(
|
91 |
-
"# <center> Sovits Models\n"
|
92 |
-
"## <center> The input audio should be clean and pure voice without background music.\n"
|
93 |
-
"\n\n"
|
94 |
-
"[Open In Colab](https://colab.research.google.com/drive/1wfsBbMzmtLflOJeqc5ZnJiLY7L239hJW?usp=share_link)"
|
95 |
-
" without queue and length limitation.\n\n"
|
96 |
-
"[Original Repo](https://github.com/svc-develop-team/so-vits-svc)\n\n"
|
97 |
-
"Other models:\n"
|
98 |
-
"[rudolf](https://huggingface.co/spaces/sayashi/sovits-rudolf)\n"
|
99 |
-
"[teio](https://huggingface.co/spaces/sayashi/sovits-teio)\n"
|
100 |
-
"[goldship](https://huggingface.co/spaces/sayashi/sovits-goldship)\n"
|
101 |
-
"[tannhauser](https://huggingface.co/spaces/sayashi/sovits-tannhauser)\n"
|
102 |
-
|
103 |
-
)
|
104 |
-
with gr.Tabs():
|
105 |
-
for (name, cover, vc_fn) in models:
|
106 |
-
with gr.TabItem(name):
|
107 |
-
with gr.Row():
|
108 |
-
gr.Markdown(
|
109 |
-
'<div align="center">'
|
110 |
-
f'<img style="width:auto;height:300px;" src="file/{cover}">' if cover else ""
|
111 |
-
'</div>'
|
112 |
-
)
|
113 |
-
with gr.Row():
|
114 |
-
with gr.Column():
|
115 |
-
with gr.Row():
|
116 |
-
vc_input = gr.Dropdown(label="Input audio", choices=raw)
|
117 |
-
vc_refresh = gr.Button("🔁", variant="primary")
|
118 |
-
vc_transform = gr.Number(label="vc_transform", value=0)
|
119 |
-
slice_db = gr.Number(label="slice_db", value=-40)
|
120 |
-
noise_scale = gr.Number(label="noise_scale", value=0.4)
|
121 |
-
pad_seconds = gr.Number(label="pad_seconds", value=0.5)
|
122 |
-
auto_f0 = gr.Checkbox(label="auto_f0", value=False)
|
123 |
-
tts_mode = gr.Checkbox(label="tts (use edge-tts as input)", value=False)
|
124 |
-
tts_text = gr.Textbox(visible=False,label="TTS text (100 words limitation)" if limitation else "TTS text")
|
125 |
-
tts_voice = gr.Dropdown(choices=voices, visible=False)
|
126 |
-
vc_submit = gr.Button("Generate", variant="primary")
|
127 |
-
with gr.Column():
|
128 |
-
vc_output1 = gr.Textbox(label="Output Message")
|
129 |
-
vc_output2 = gr.Audio(label="Output Audio")
|
130 |
-
vc_submit.click(vc_fn, [vc_input, vc_transform, auto_f0, slice_db, noise_scale, pad_seconds, tts_text, tts_voice, tts_mode], [vc_output1, vc_output2])
|
131 |
-
vc_refresh.click(refresh_raw_wav, [], [vc_input])
|
132 |
-
tts_mode.change(change_to_tts_mode, [tts_mode], [vc_input, vc_refresh, tts_text, tts_voice])
|
133 |
-
if args.colab:
|
134 |
-
webbrowser.open("http://127.0.0.1:7860")
|
135 |
-
app.queue(concurrency_count=1, api_open=args.api).launch(share=args.share)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
CHANGED
@@ -17,7 +17,6 @@ logging.getLogger('markdown_it').setLevel(logging.WARNING)
|
|
17 |
logging.getLogger('urllib3').setLevel(logging.WARNING)
|
18 |
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
19 |
|
20 |
-
limitation = os.getenv("SYSTEM") == "spaces" # limit audio length in huggingface spaces
|
21 |
sampling_rate = 44100
|
22 |
|
23 |
|
|
|
17 |
logging.getLogger('urllib3').setLevel(logging.WARNING)
|
18 |
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
19 |
|
|
|
20 |
sampling_rate = 44100
|
21 |
|
22 |
|
data_utils.py
DELETED
@@ -1,184 +0,0 @@
|
|
1 |
-
import time
|
2 |
-
import os
|
3 |
-
import random
|
4 |
-
import numpy as np
|
5 |
-
import torch
|
6 |
-
import torch.utils.data
|
7 |
-
|
8 |
-
import modules.commons as commons
|
9 |
-
import utils
|
10 |
-
from modules.mel_processing import spectrogram_torch, spec_to_mel_torch, spectrogram_torch
|
11 |
-
from utils import load_wav_to_torch, load_filepaths_and_text
|
12 |
-
|
13 |
-
# import h5py
|
14 |
-
|
15 |
-
|
16 |
-
"""Multi speaker version"""
|
17 |
-
|
18 |
-
|
19 |
-
class TextAudioSpeakerLoader(torch.utils.data.Dataset):
|
20 |
-
"""
|
21 |
-
1) loads audio, speaker_id, text pairs
|
22 |
-
2) normalizes text and converts them to sequences of integers
|
23 |
-
3) computes spectrograms from audio files.
|
24 |
-
"""
|
25 |
-
|
26 |
-
def __init__(self, audiopaths, hparams, all_in_mem: bool = False, vol_aug: bool = True):
|
27 |
-
self.audiopaths = load_filepaths_and_text(audiopaths)
|
28 |
-
self.hparams = hparams
|
29 |
-
self.max_wav_value = hparams.data.max_wav_value
|
30 |
-
self.sampling_rate = hparams.data.sampling_rate
|
31 |
-
self.filter_length = hparams.data.filter_length
|
32 |
-
self.hop_length = hparams.data.hop_length
|
33 |
-
self.win_length = hparams.data.win_length
|
34 |
-
self.sampling_rate = hparams.data.sampling_rate
|
35 |
-
self.use_sr = hparams.train.use_sr
|
36 |
-
self.spec_len = hparams.train.max_speclen
|
37 |
-
self.spk_map = hparams.spk
|
38 |
-
self.vol_emb = hparams.model.vol_embedding
|
39 |
-
self.vol_aug = hparams.train.vol_aug and vol_aug
|
40 |
-
random.seed(1234)
|
41 |
-
random.shuffle(self.audiopaths)
|
42 |
-
|
43 |
-
self.all_in_mem = all_in_mem
|
44 |
-
if self.all_in_mem:
|
45 |
-
self.cache = [self.get_audio(p[0]) for p in self.audiopaths]
|
46 |
-
|
47 |
-
def get_audio(self, filename):
|
48 |
-
filename = filename.replace("\\", "/")
|
49 |
-
audio, sampling_rate = load_wav_to_torch(filename)
|
50 |
-
if sampling_rate != self.sampling_rate:
|
51 |
-
raise ValueError("{} SR doesn't match target {} SR".format(
|
52 |
-
sampling_rate, self.sampling_rate))
|
53 |
-
audio_norm = audio / self.max_wav_value
|
54 |
-
audio_norm = audio_norm.unsqueeze(0)
|
55 |
-
spec_filename = filename.replace(".wav", ".spec.pt")
|
56 |
-
|
57 |
-
# Ideally, all data generated after Mar 25 should have .spec.pt
|
58 |
-
if os.path.exists(spec_filename):
|
59 |
-
spec = torch.load(spec_filename)
|
60 |
-
else:
|
61 |
-
spec = spectrogram_torch(audio_norm, self.filter_length,
|
62 |
-
self.sampling_rate, self.hop_length, self.win_length,
|
63 |
-
center=False)
|
64 |
-
spec = torch.squeeze(spec, 0)
|
65 |
-
torch.save(spec, spec_filename)
|
66 |
-
|
67 |
-
spk = filename.split("/")[-2]
|
68 |
-
spk = torch.LongTensor([self.spk_map[spk]])
|
69 |
-
|
70 |
-
f0, uv = np.load(filename + ".f0.npy",allow_pickle=True)
|
71 |
-
|
72 |
-
f0 = torch.FloatTensor(np.array(f0,dtype=float))
|
73 |
-
uv = torch.FloatTensor(np.array(uv,dtype=float))
|
74 |
-
|
75 |
-
c = torch.load(filename+ ".soft.pt")
|
76 |
-
c = utils.repeat_expand_2d(c.squeeze(0), f0.shape[0])
|
77 |
-
if self.vol_emb:
|
78 |
-
volume_path = filename + ".vol.npy"
|
79 |
-
volume = np.load(volume_path)
|
80 |
-
volume = torch.from_numpy(volume).float()
|
81 |
-
else:
|
82 |
-
volume = None
|
83 |
-
|
84 |
-
lmin = min(c.size(-1), spec.size(-1))
|
85 |
-
assert abs(c.size(-1) - spec.size(-1)) < 3, (c.size(-1), spec.size(-1), f0.shape, filename)
|
86 |
-
assert abs(audio_norm.shape[1]-lmin * self.hop_length) < 3 * self.hop_length
|
87 |
-
spec, c, f0, uv = spec[:, :lmin], c[:, :lmin], f0[:lmin], uv[:lmin]
|
88 |
-
audio_norm = audio_norm[:, :lmin * self.hop_length]
|
89 |
-
if volume!= None:
|
90 |
-
volume = volume[:lmin]
|
91 |
-
return c, f0, spec, audio_norm, spk, uv, volume
|
92 |
-
|
93 |
-
def random_slice(self, c, f0, spec, audio_norm, spk, uv, volume):
|
94 |
-
# if spec.shape[1] < 30:
|
95 |
-
# print("skip too short audio:", filename)
|
96 |
-
# return None
|
97 |
-
|
98 |
-
if random.choice([True, False]) and self.vol_aug and volume!=None:
|
99 |
-
max_amp = float(torch.max(torch.abs(audio_norm))) + 1e-5
|
100 |
-
max_shift = min(1, np.log10(1/max_amp))
|
101 |
-
log10_vol_shift = random.uniform(-1, max_shift)
|
102 |
-
audio_norm = audio_norm * (10 ** log10_vol_shift)
|
103 |
-
volume = volume * (10 ** log10_vol_shift)
|
104 |
-
spec = spectrogram_torch(audio_norm,
|
105 |
-
self.hparams.data.filter_length,
|
106 |
-
self.hparams.data.sampling_rate,
|
107 |
-
self.hparams.data.hop_length,
|
108 |
-
self.hparams.data.win_length,
|
109 |
-
center=False)[0]
|
110 |
-
|
111 |
-
if spec.shape[1] > 800:
|
112 |
-
start = random.randint(0, spec.shape[1]-800)
|
113 |
-
end = start + 790
|
114 |
-
spec, c, f0, uv = spec[:, start:end], c[:, start:end], f0[start:end], uv[start:end]
|
115 |
-
audio_norm = audio_norm[:, start * self.hop_length : end * self.hop_length]
|
116 |
-
if volume !=None:
|
117 |
-
volume = volume[start:end]
|
118 |
-
return c, f0, spec, audio_norm, spk, uv,volume
|
119 |
-
|
120 |
-
def __getitem__(self, index):
|
121 |
-
if self.all_in_mem:
|
122 |
-
return self.random_slice(*self.cache[index])
|
123 |
-
else:
|
124 |
-
return self.random_slice(*self.get_audio(self.audiopaths[index][0]))
|
125 |
-
|
126 |
-
def __len__(self):
|
127 |
-
return len(self.audiopaths)
|
128 |
-
|
129 |
-
|
130 |
-
class TextAudioCollate:
|
131 |
-
|
132 |
-
def __call__(self, batch):
|
133 |
-
batch = [b for b in batch if b is not None]
|
134 |
-
|
135 |
-
input_lengths, ids_sorted_decreasing = torch.sort(
|
136 |
-
torch.LongTensor([x[0].shape[1] for x in batch]),
|
137 |
-
dim=0, descending=True)
|
138 |
-
|
139 |
-
max_c_len = max([x[0].size(1) for x in batch])
|
140 |
-
max_wav_len = max([x[3].size(1) for x in batch])
|
141 |
-
|
142 |
-
lengths = torch.LongTensor(len(batch))
|
143 |
-
|
144 |
-
c_padded = torch.FloatTensor(len(batch), batch[0][0].shape[0], max_c_len)
|
145 |
-
f0_padded = torch.FloatTensor(len(batch), max_c_len)
|
146 |
-
spec_padded = torch.FloatTensor(len(batch), batch[0][2].shape[0], max_c_len)
|
147 |
-
wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
|
148 |
-
spkids = torch.LongTensor(len(batch), 1)
|
149 |
-
uv_padded = torch.FloatTensor(len(batch), max_c_len)
|
150 |
-
volume_padded = torch.FloatTensor(len(batch), max_c_len)
|
151 |
-
|
152 |
-
c_padded.zero_()
|
153 |
-
spec_padded.zero_()
|
154 |
-
f0_padded.zero_()
|
155 |
-
wav_padded.zero_()
|
156 |
-
uv_padded.zero_()
|
157 |
-
volume_padded.zero_()
|
158 |
-
|
159 |
-
for i in range(len(ids_sorted_decreasing)):
|
160 |
-
row = batch[ids_sorted_decreasing[i]]
|
161 |
-
|
162 |
-
c = row[0]
|
163 |
-
c_padded[i, :, :c.size(1)] = c
|
164 |
-
lengths[i] = c.size(1)
|
165 |
-
|
166 |
-
f0 = row[1]
|
167 |
-
f0_padded[i, :f0.size(0)] = f0
|
168 |
-
|
169 |
-
spec = row[2]
|
170 |
-
spec_padded[i, :, :spec.size(1)] = spec
|
171 |
-
|
172 |
-
wav = row[3]
|
173 |
-
wav_padded[i, :, :wav.size(1)] = wav
|
174 |
-
|
175 |
-
spkids[i, 0] = row[4]
|
176 |
-
|
177 |
-
uv = row[5]
|
178 |
-
uv_padded[i, :uv.size(0)] = uv
|
179 |
-
volume = row[6]
|
180 |
-
if volume != None:
|
181 |
-
volume_padded[i, :volume.size(0)] = volume
|
182 |
-
else :
|
183 |
-
volume_padded = None
|
184 |
-
return c_padded, f0_padded, spec_padded, wav_padded, spkids, lengths, uv_padded, volume_padded
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
utils.py
CHANGED
@@ -1,21 +1,16 @@
|
|
1 |
-
import os
|
2 |
import glob
|
3 |
-
import re
|
4 |
-
import sys
|
5 |
-
import argparse
|
6 |
-
import logging
|
7 |
import json
|
|
|
|
|
|
|
8 |
import subprocess
|
9 |
-
import
|
10 |
-
|
11 |
-
import functools
|
12 |
import librosa
|
13 |
import numpy as np
|
14 |
-
from scipy.io.wavfile import read
|
15 |
import torch
|
|
|
16 |
from torch.nn import functional as F
|
17 |
-
from modules.commons import sequence_mask
|
18 |
-
import tqdm
|
19 |
|
20 |
MATPLOTLIB_FLAG = False
|
21 |
|
|
|
|
|
1 |
import glob
|
|
|
|
|
|
|
|
|
2 |
import json
|
3 |
+
import logging
|
4 |
+
import os
|
5 |
+
import re
|
6 |
import subprocess
|
7 |
+
import sys
|
8 |
+
|
|
|
9 |
import librosa
|
10 |
import numpy as np
|
|
|
11 |
import torch
|
12 |
+
from scipy.io.wavfile import read
|
13 |
from torch.nn import functional as F
|
|
|
|
|
14 |
|
15 |
MATPLOTLIB_FLAG = False
|
16 |
|