Spaces:
Runtime error
Runtime error
| import time | |
| from threading import Thread | |
| import gradio as gr | |
| import torch | |
| from PIL import Image | |
| from transformers import AutoProcessor, LlavaForConditionalGeneration | |
| from transformers import TextIteratorStreamer | |
| import spaces | |
| PLACEHOLDER = """ | |
| <div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;"> | |
| <img src="https://cdn-uploads.huggingface.co/production/uploads/64ccdc322e592905f922a06e/DDIW0kbWmdOQWwy4XMhwX.png" style="width: 80%; max-width: 550px; height: auto; opacity: 0.55; "> | |
| <h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">LLaVA-Llama-3-8B</h1> | |
| <p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Llava-Llama-3-8b is a LLaVA model fine-tuned from Meta-Llama-3-8B-Instruct and CLIP-ViT-Large-patch14-336 with ShareGPT4V-PT and InternVL-SFT by XTuner</p> | |
| </div> | |
| """ | |
| model_id_llama3 = "xtuner/llava-llama-3-8b-v1_1-transformers" | |
| model_id_phi3 = "xtuner/llava-llama-3-8b-v1_1-transformers" | |
| processor = AutoProcessor.from_pretrained(model_id_llama3) | |
| processor = AutoProcessor.from_pretrained(model_id_phi3) | |
| model_llama3 = LlavaForConditionalGeneration.from_pretrained( | |
| model_id_llama3, | |
| torch_dtype=torch.float16, | |
| low_cpu_mem_usage=True, | |
| ) | |
| model_llama3.to("cuda:0") | |
| model_llama3.generation_config.eos_token_id = 128009 | |
| model_phi3 = LlavaForConditionalGeneration.from_pretrained( | |
| model_id_phi3, | |
| torch_dtype=torch.float16, | |
| low_cpu_mem_usage=True, | |
| ) | |
| model_phi3.to("cuda:0") | |
| model_phi3.generation_config.eos_token_id = 128009 | |
| def bot_streaming_llama3(message, history): | |
| print(message) | |
| if message["files"]: | |
| # message["files"][-1] is a Dict or just a string | |
| if type(message["files"][-1]) == dict: | |
| image = message["files"][-1]["path"] | |
| else: | |
| image = message["files"][-1] | |
| else: | |
| # if there's no image uploaded for this turn, look for images in the past turns | |
| # kept inside tuples, take the last one | |
| for hist in history: | |
| if type(hist[0]) == tuple: | |
| image = hist[0][0] | |
| try: | |
| if image is None: | |
| # Handle the case where image is None | |
| gr.Error("You need to upload an image for LLaVA to work.") | |
| except NameError: | |
| # Handle the case where 'image' is not defined at all | |
| gr.Error("You need to upload an image for LLaVA to work.") | |
| prompt = f"<|start_header_id|>user<|end_header_id|>\n\n<image>\n{message['text']}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n" | |
| # print(f"prompt: {prompt}") | |
| image = Image.open(image) | |
| inputs = processor(prompt, image, return_tensors='pt').to(0, torch.float16) | |
| streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": False, "skip_prompt": True}) | |
| generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024, do_sample=False) | |
| thread = Thread(target=model_llama3.generate, kwargs=generation_kwargs) | |
| thread.start() | |
| text_prompt = f"<|start_header_id|>user<|end_header_id|>\n\n{message['text']}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n" | |
| # print(f"text_prompt: {text_prompt}") | |
| buffer = "" | |
| time.sleep(0.5) | |
| for new_text in streamer: | |
| # find <|eot_id|> and remove it from the new_text | |
| if "<|eot_id|>" in new_text: | |
| new_text = new_text.split("<|eot_id|>")[0] | |
| buffer += new_text | |
| # generated_text_without_prompt = buffer[len(text_prompt):] | |
| generated_text_without_prompt = buffer | |
| # print(generated_text_without_prompt) | |
| time.sleep(0.06) | |
| # print(f"new_text: {generated_text_without_prompt}") | |
| yield generated_text_without_prompt | |
| def bot_streaming_phi3(message, history): | |
| print(message) | |
| if message["files"]: | |
| # message["files"][-1] is a Dict or just a string | |
| if type(message["files"][-1]) == dict: | |
| image = message["files"][-1]["path"] | |
| else: | |
| image = message["files"][-1] | |
| else: | |
| # if there's no image uploaded for this turn, look for images in the past turns | |
| # kept inside tuples, take the last one | |
| for hist in history: | |
| if type(hist[0]) == tuple: | |
| image = hist[0][0] | |
| try: | |
| if image is None: | |
| # Handle the case where image is None | |
| gr.Error("You need to upload an image for LLaVA to work.") | |
| except NameError: | |
| # Handle the case where 'image' is not defined at all | |
| gr.Error("You need to upload an image for LLaVA to work.") | |
| prompt = f"<|start_header_id|>user<|end_header_id|>\n\n<image>\n{message['text']}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n" | |
| # print(f"prompt: {prompt}") | |
| image = Image.open(image) | |
| inputs = processor(prompt, image, return_tensors='pt').to(0, torch.float16) | |
| streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": False, "skip_prompt": True}) | |
| generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024, do_sample=False) | |
| thread = Thread(target=model_phi3.generate, kwargs=generation_kwargs) | |
| thread.start() | |
| text_prompt = f"<|start_header_id|>user<|end_header_id|>\n\n{message['text']}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n" | |
| # print(f"text_prompt: {text_prompt}") | |
| buffer = "" | |
| time.sleep(0.5) | |
| for new_text in streamer: | |
| # find <|eot_id|> and remove it from the new_text | |
| if "<|eot_id|>" in new_text: | |
| new_text = new_text.split("<|eot_id|>")[0] | |
| buffer += new_text | |
| # generated_text_without_prompt = buffer[len(text_prompt):] | |
| generated_text_without_prompt = buffer | |
| # print(generated_text_without_prompt) | |
| time.sleep(0.06) | |
| # print(f"new_text: {generated_text_without_prompt}") | |
| yield generated_text_without_prompt | |
| #chatbot=gr.Chatbot(placeholder=PLACEHOLDER,scale=1) | |
| #chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter message or upload file...", show_label=False) | |
| with gr.Blocks(fill_height=True, ) as demo: | |
| with gr.Row(): | |
| chatbot1 = gr.Chatbot( | |
| [], | |
| elem_id="llama3", | |
| bubble_full_width=False, | |
| label='LLaVa-Llama3' | |
| ) | |
| chatbot2 = gr.Chatbot( | |
| [], | |
| elem_id="phi3", | |
| bubble_full_width=False, | |
| label='LLaVa-Phi3' | |
| ) | |
| chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter message or upload file...", show_label=False) | |
| gr.Examples(examples=[[{"text": "What is on the flower?", "files": ["./bee.png"]}],], | |
| {"text": "How to make this pastry?", "files": ["./baklava.png"]},], | |
| inputs=chat_input) | |
| #chat_input.submit(lambda: gr.MultimodalTextbox(interactive=False), None, [chat_input]).then(bot_streaming_llama3, [chat_input, chatbot1,], [chatbot1,]) | |
| chat_msg1 = chat_input.submit(bot_streaming_llama3, [chat_input, chatbot1,], [chatbot1,]) | |
| chat_msg2 = chat_input.submit(bot_streaming_phi3, [chat_input, chatbot2,], [chatbot2,]) | |
| #bot_msg1 = chat_msg1.then(bot, chatbot1, chatbot1, api_name="bot_response1") | |
| #chat_msg1.then(lambda: gr.MultimodalTextbox(interactive=True), None, [chat_input]) | |
| #bot_msg2 = chat_msg2.then(bot, chatbot2, chatbot2, api_name="bot_response2") | |
| #bot_msg2.then(lambda: gr.MultimodalTextbox(interactive=True), None, [chat_input]) | |
| chatbot1.like(print_like_dislike, None, None) | |
| chatbot2.like(print_like_dislike, None, None) | |
| #gr.ChatInterface( | |
| #fn=bot_streaming_llama3, | |
| #title="LLaVA Llama-3-8B", | |
| #examples=[{"text": "What is on the flower?", "files": ["./bee.jpg"]}, | |
| # {"text": "How to make this pastry?", "files": ["./baklava.png"]}], | |
| #description="Try [LLaVA Llama-3-8B](https://huggingface.co/xtuner/llava-llama-3-8b-v1_1-transformers). Upload an image and start chatting about it, or simply try one of the examples below. If you don't upload an image, you will receive an error.", | |
| #stop_btn="Stop Generation", | |
| #multimodal=True, | |
| #textbox=chat_input, | |
| #chatbot=chatbot, | |
| #) | |
| demo.queue(api_open=False) | |
| demo.launch(show_api=False, share=False) | |