Spaces:
Runtime error
Runtime error
File size: 8,171 Bytes
b6fa3b6 d02b0d1 b6fa3b6 d02b0d1 b6fa3b6 d02b0d1 f04732f f4ce971 aab5615 d2eb8e2 d02b0d1 d2eb8e2 d02b0d1 d2eb8e2 b6fa3b6 6c67d55 d2eb8e2 d02b0d1 d2eb8e2 f04732f b6fa3b6 f04732f d2eb8e2 d5fb61d b6fa3b6 d5fb61d b6fa3b6 1117f0e 8eae1e0 b6fa3b6 1117f0e 70f2766 b6fa3b6 70f2766 b6fa3b6 d5fb61d d2eb8e2 70f2766 b6fa3b6 d5fb61d 70f2766 b6fa3b6 70f2766 b6fa3b6 58cf028 b6fa3b6 58cf028 f04732f d2eb8e2 802c092 d2eb8e2 65b77dc d2eb8e2 50def22 d5fb61d b6fa3b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
import time
from threading import Thread
import gradio as gr
import torch
from PIL import Image
from transformers import AutoProcessor, LlavaForConditionalGeneration
from transformers import TextIteratorStreamer
import spaces
PLACEHOLDER = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
<img src="https://cdn-uploads.huggingface.co/production/uploads/64ccdc322e592905f922a06e/DDIW0kbWmdOQWwy4XMhwX.png" style="width: 80%; max-width: 550px; height: auto; opacity: 0.55; ">
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">LLaVA-Llama-3-8B</h1>
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Llava-Llama-3-8b is a LLaVA model fine-tuned from Meta-Llama-3-8B-Instruct and CLIP-ViT-Large-patch14-336 with ShareGPT4V-PT and InternVL-SFT by XTuner</p>
</div>
"""
model_id_llama3 = "xtuner/llava-llama-3-8b-v1_1-transformers"
model_id_phi3 = "xtuner/llava-llama-3-8b-v1_1-transformers"
processor = AutoProcessor.from_pretrained(model_id_llama3)
processor = AutoProcessor.from_pretrained(model_id_phi3)
model_llama3 = LlavaForConditionalGeneration.from_pretrained(
model_id_llama3,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
)
model_llama3.to("cuda:0")
model_llama3.generation_config.eos_token_id = 128009
model_phi3 = LlavaForConditionalGeneration.from_pretrained(
model_id_phi3,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
)
model_phi3.to("cuda:0")
model_phi3.generation_config.eos_token_id = 128009
@spaces.GPU
def bot_streaming_llama3(message, history):
print(message)
if message["files"]:
# message["files"][-1] is a Dict or just a string
if type(message["files"][-1]) == dict:
image = message["files"][-1]["path"]
else:
image = message["files"][-1]
else:
# if there's no image uploaded for this turn, look for images in the past turns
# kept inside tuples, take the last one
for hist in history:
if type(hist[0]) == tuple:
image = hist[0][0]
try:
if image is None:
# Handle the case where image is None
gr.Error("You need to upload an image for LLaVA to work.")
except NameError:
# Handle the case where 'image' is not defined at all
gr.Error("You need to upload an image for LLaVA to work.")
prompt = f"<|start_header_id|>user<|end_header_id|>\n\n<image>\n{message['text']}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
# print(f"prompt: {prompt}")
image = Image.open(image)
inputs = processor(prompt, image, return_tensors='pt').to(0, torch.float16)
streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": False, "skip_prompt": True})
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024, do_sample=False)
thread = Thread(target=model_llama3.generate, kwargs=generation_kwargs)
thread.start()
text_prompt = f"<|start_header_id|>user<|end_header_id|>\n\n{message['text']}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
# print(f"text_prompt: {text_prompt}")
buffer = ""
time.sleep(0.5)
for new_text in streamer:
# find <|eot_id|> and remove it from the new_text
if "<|eot_id|>" in new_text:
new_text = new_text.split("<|eot_id|>")[0]
buffer += new_text
# generated_text_without_prompt = buffer[len(text_prompt):]
generated_text_without_prompt = buffer
# print(generated_text_without_prompt)
time.sleep(0.06)
# print(f"new_text: {generated_text_without_prompt}")
yield generated_text_without_prompt
@spaces.GPU
def bot_streaming_phi3(message, history):
print(message)
if message["files"]:
# message["files"][-1] is a Dict or just a string
if type(message["files"][-1]) == dict:
image = message["files"][-1]["path"]
else:
image = message["files"][-1]
else:
# if there's no image uploaded for this turn, look for images in the past turns
# kept inside tuples, take the last one
for hist in history:
if type(hist[0]) == tuple:
image = hist[0][0]
try:
if image is None:
# Handle the case where image is None
gr.Error("You need to upload an image for LLaVA to work.")
except NameError:
# Handle the case where 'image' is not defined at all
gr.Error("You need to upload an image for LLaVA to work.")
prompt = f"<|start_header_id|>user<|end_header_id|>\n\n<image>\n{message['text']}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
# print(f"prompt: {prompt}")
image = Image.open(image)
inputs = processor(prompt, image, return_tensors='pt').to(0, torch.float16)
streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": False, "skip_prompt": True})
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024, do_sample=False)
thread = Thread(target=model_phi3.generate, kwargs=generation_kwargs)
thread.start()
text_prompt = f"<|start_header_id|>user<|end_header_id|>\n\n{message['text']}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
# print(f"text_prompt: {text_prompt}")
buffer = ""
time.sleep(0.5)
for new_text in streamer:
# find <|eot_id|> and remove it from the new_text
if "<|eot_id|>" in new_text:
new_text = new_text.split("<|eot_id|>")[0]
buffer += new_text
# generated_text_without_prompt = buffer[len(text_prompt):]
generated_text_without_prompt = buffer
# print(generated_text_without_prompt)
time.sleep(0.06)
# print(f"new_text: {generated_text_without_prompt}")
yield generated_text_without_prompt
#chatbot=gr.Chatbot(placeholder=PLACEHOLDER,scale=1)
#chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter message or upload file...", show_label=False)
with gr.Blocks(fill_height=True, ) as demo:
with gr.Row():
chatbot1 = gr.Chatbot(
[],
elem_id="llama3",
bubble_full_width=False,
label='LLaVa-Llama3'
)
chatbot2 = gr.Chatbot(
[],
elem_id="phi3",
bubble_full_width=False,
label='LLaVa-Phi3'
)
chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter message or upload file...", show_label=False)
gr.Examples(examples=[[{"text": "What is on the flower?", "files": ["./bee.png"]}],],
{"text": "How to make this pastry?", "files": ["./baklava.png"]},],
inputs=chat_input)
#chat_input.submit(lambda: gr.MultimodalTextbox(interactive=False), None, [chat_input]).then(bot_streaming_llama3, [chat_input, chatbot1,], [chatbot1,])
chat_msg1 = chat_input.submit(bot_streaming_llama3, [chat_input, chatbot1,], [chatbot1,])
chat_msg2 = chat_input.submit(bot_streaming_phi3, [chat_input, chatbot2,], [chatbot2,])
#bot_msg1 = chat_msg1.then(bot, chatbot1, chatbot1, api_name="bot_response1")
#chat_msg1.then(lambda: gr.MultimodalTextbox(interactive=True), None, [chat_input])
#bot_msg2 = chat_msg2.then(bot, chatbot2, chatbot2, api_name="bot_response2")
#bot_msg2.then(lambda: gr.MultimodalTextbox(interactive=True), None, [chat_input])
chatbot1.like(print_like_dislike, None, None)
chatbot2.like(print_like_dislike, None, None)
#gr.ChatInterface(
#fn=bot_streaming_llama3,
#title="LLaVA Llama-3-8B",
#examples=[{"text": "What is on the flower?", "files": ["./bee.jpg"]},
# {"text": "How to make this pastry?", "files": ["./baklava.png"]}],
#description="Try [LLaVA Llama-3-8B](https://huggingface.co/xtuner/llava-llama-3-8b-v1_1-transformers). Upload an image and start chatting about it, or simply try one of the examples below. If you don't upload an image, you will receive an error.",
#stop_btn="Stop Generation",
#multimodal=True,
#textbox=chat_input,
#chatbot=chatbot,
#)
demo.queue(api_open=False)
demo.launch(show_api=False, share=False)
|