File size: 8,171 Bytes
b6fa3b6
 
d02b0d1
b6fa3b6
 
 
d02b0d1
b6fa3b6
d02b0d1
f04732f
f4ce971
aab5615
 
 
 
 
 
 
 
 
d2eb8e2
 
d02b0d1
d2eb8e2
 
d02b0d1
d2eb8e2
 
b6fa3b6
 
6c67d55
d2eb8e2
 
d02b0d1
d2eb8e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f04732f
b6fa3b6
f04732f
d2eb8e2
d5fb61d
 
b6fa3b6
 
 
 
 
d5fb61d
 
 
 
b6fa3b6
 
1117f0e
8eae1e0
 
b6fa3b6
1117f0e
70f2766
b6fa3b6
 
 
 
70f2766
 
b6fa3b6
 
 
d5fb61d
d2eb8e2
70f2766
b6fa3b6
 
 
d5fb61d
70f2766
b6fa3b6
70f2766
b6fa3b6
 
 
58cf028
b6fa3b6
 
 
 
 
 
58cf028
f04732f
 
d2eb8e2
 
 
802c092
d2eb8e2
 
 
 
 
 
 
 
 
 
 
 
65b77dc
d2eb8e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50def22
d5fb61d
b6fa3b6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import time
from threading import Thread

import gradio as gr
import torch
from PIL import Image
from transformers import AutoProcessor, LlavaForConditionalGeneration
from transformers import TextIteratorStreamer

import spaces


PLACEHOLDER = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
   <img src="https://cdn-uploads.huggingface.co/production/uploads/64ccdc322e592905f922a06e/DDIW0kbWmdOQWwy4XMhwX.png" style="width: 80%; max-width: 550px; height: auto; opacity: 0.55;  "> 
   <h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">LLaVA-Llama-3-8B</h1>
   <p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Llava-Llama-3-8b is a LLaVA model fine-tuned from Meta-Llama-3-8B-Instruct and CLIP-ViT-Large-patch14-336 with ShareGPT4V-PT and InternVL-SFT by XTuner</p>
</div>
"""

model_id_llama3 = "xtuner/llava-llama-3-8b-v1_1-transformers"
model_id_phi3 = "xtuner/llava-llama-3-8b-v1_1-transformers"

processor = AutoProcessor.from_pretrained(model_id_llama3)
processor = AutoProcessor.from_pretrained(model_id_phi3)

model_llama3 = LlavaForConditionalGeneration.from_pretrained(
    model_id_llama3,
    torch_dtype=torch.float16,
    low_cpu_mem_usage=True,
)
model_llama3.to("cuda:0")
model_llama3.generation_config.eos_token_id = 128009

model_phi3 = LlavaForConditionalGeneration.from_pretrained(
    model_id_phi3,
    torch_dtype=torch.float16,
    low_cpu_mem_usage=True,
)
model_phi3.to("cuda:0")
model_phi3.generation_config.eos_token_id = 128009


@spaces.GPU
def bot_streaming_llama3(message, history):
    print(message)
    if message["files"]:
        # message["files"][-1] is a Dict or just a string
        if type(message["files"][-1]) == dict:
            image = message["files"][-1]["path"]
        else:
            image = message["files"][-1]
    else:
        # if there's no image uploaded for this turn, look for images in the past turns
        # kept inside tuples, take the last one
        for hist in history:
            if type(hist[0]) == tuple:
                image = hist[0][0]
    try:
        if image is None:
            # Handle the case where image is None
            gr.Error("You need to upload an image for LLaVA to work.")
    except NameError:
        # Handle the case where 'image' is not defined at all
        gr.Error("You need to upload an image for LLaVA to work.")

    prompt = f"<|start_header_id|>user<|end_header_id|>\n\n<image>\n{message['text']}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
    # print(f"prompt: {prompt}")
    image = Image.open(image)
    inputs = processor(prompt, image, return_tensors='pt').to(0, torch.float16)

    streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": False, "skip_prompt": True})
    generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024, do_sample=False)

    thread = Thread(target=model_llama3.generate, kwargs=generation_kwargs)
    thread.start()

    text_prompt = f"<|start_header_id|>user<|end_header_id|>\n\n{message['text']}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
    # print(f"text_prompt: {text_prompt}")

    buffer = ""
    time.sleep(0.5)
    for new_text in streamer:
        # find <|eot_id|> and remove it from the new_text
        if "<|eot_id|>" in new_text:
            new_text = new_text.split("<|eot_id|>")[0]
        buffer += new_text

        # generated_text_without_prompt = buffer[len(text_prompt):]
        generated_text_without_prompt = buffer
        # print(generated_text_without_prompt)
        time.sleep(0.06)
        # print(f"new_text: {generated_text_without_prompt}")
        yield generated_text_without_prompt


@spaces.GPU
def bot_streaming_phi3(message, history):
    print(message)
    if message["files"]:
        # message["files"][-1] is a Dict or just a string
        if type(message["files"][-1]) == dict:
            image = message["files"][-1]["path"]
        else:
            image = message["files"][-1]
    else:
        # if there's no image uploaded for this turn, look for images in the past turns
        # kept inside tuples, take the last one
        for hist in history:
            if type(hist[0]) == tuple:
                image = hist[0][0]
    try:
        if image is None:
            # Handle the case where image is None
            gr.Error("You need to upload an image for LLaVA to work.")
    except NameError:
        # Handle the case where 'image' is not defined at all
        gr.Error("You need to upload an image for LLaVA to work.")

    prompt = f"<|start_header_id|>user<|end_header_id|>\n\n<image>\n{message['text']}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
    # print(f"prompt: {prompt}")
    image = Image.open(image)
    inputs = processor(prompt, image, return_tensors='pt').to(0, torch.float16)

    streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": False, "skip_prompt": True})
    generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024, do_sample=False)

    thread = Thread(target=model_phi3.generate, kwargs=generation_kwargs)
    thread.start()

    text_prompt = f"<|start_header_id|>user<|end_header_id|>\n\n{message['text']}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
    # print(f"text_prompt: {text_prompt}")

    buffer = ""
    time.sleep(0.5)
    for new_text in streamer:
        # find <|eot_id|> and remove it from the new_text
        if "<|eot_id|>" in new_text:
            new_text = new_text.split("<|eot_id|>")[0]
        buffer += new_text

        # generated_text_without_prompt = buffer[len(text_prompt):]
        generated_text_without_prompt = buffer
        # print(generated_text_without_prompt)
        time.sleep(0.06)
        # print(f"new_text: {generated_text_without_prompt}")
        yield generated_text_without_prompt


#chatbot=gr.Chatbot(placeholder=PLACEHOLDER,scale=1)
#chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter message or upload file...", show_label=False)

with gr.Blocks(fill_height=True, ) as demo:
  with gr.Row():
    chatbot1 = gr.Chatbot(
    [],
    elem_id="llama3",
    bubble_full_width=False,
    label='LLaVa-Llama3'
    )
    chatbot2 = gr.Chatbot(
    [],
    elem_id="phi3",
    bubble_full_width=False,
    label='LLaVa-Phi3'
    )
      
  chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter message or upload file...", show_label=False)

  gr.Examples(examples=[[{"text": "What is on the flower?", "files": ["./bee.png"]}],],
        {"text": "How to make this pastry?", "files": ["./baklava.png"]},],
              inputs=chat_input)

  #chat_input.submit(lambda: gr.MultimodalTextbox(interactive=False), None, [chat_input]).then(bot_streaming_llama3, [chat_input, chatbot1,], [chatbot1,])
  
  chat_msg1 = chat_input.submit(bot_streaming_llama3, [chat_input, chatbot1,], [chatbot1,])
  chat_msg2 = chat_input.submit(bot_streaming_phi3, [chat_input, chatbot2,], [chatbot2,])

  #bot_msg1 = chat_msg1.then(bot, chatbot1, chatbot1, api_name="bot_response1")
  #chat_msg1.then(lambda: gr.MultimodalTextbox(interactive=True), None, [chat_input])
  #bot_msg2 = chat_msg2.then(bot, chatbot2, chatbot2, api_name="bot_response2")
  #bot_msg2.then(lambda: gr.MultimodalTextbox(interactive=True), None, [chat_input])

  chatbot1.like(print_like_dislike, None, None)
  chatbot2.like(print_like_dislike, None, None)

 
    #gr.ChatInterface(
    #fn=bot_streaming_llama3,
    #title="LLaVA Llama-3-8B",
    #examples=[{"text": "What is on the flower?", "files": ["./bee.jpg"]},
    #          {"text": "How to make this pastry?", "files": ["./baklava.png"]}],
    #description="Try [LLaVA Llama-3-8B](https://huggingface.co/xtuner/llava-llama-3-8b-v1_1-transformers). Upload an image and start chatting about it, or simply try one of the examples below. If you don't upload an image, you will receive an error.",
    #stop_btn="Stop Generation",
    #multimodal=True,
    #textbox=chat_input,
    #chatbot=chatbot,
    #)

demo.queue(api_open=False)
demo.launch(show_api=False, share=False)