Spaces:
Running
Running
import os | |
import shutil | |
from flask import Flask, render_template, request, jsonify | |
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings | |
from llama_index.llms.huggingface import HuggingFaceInferenceAPI | |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding | |
from huggingface_hub import InferenceClient | |
# Ensure HF_TOKEN is set | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
if not HF_TOKEN: | |
raise ValueError("HF_TOKEN environment variable not set.") | |
repo_id = "FacebookAI/xlm-roberta-base" | |
llm_client = InferenceClient( | |
model=repo_id, | |
token=HF_TOKEN, | |
) | |
# Configure Llama index settings | |
# Settings.llm = HuggingFaceInferenceAPI( | |
# model_name=repo_id, | |
# tokenizer_name=repo_id, | |
# context_window=3000, | |
# token=HF_TOKEN, | |
# max_new_tokens=512, | |
# generate_kwargs={"temperature": 0.1}, | |
# ) | |
# Settings.embed_model = HuggingFaceEmbedding( | |
# model_name="BAAI/bge-small-en-v1.5" | |
# ) | |
# # Configure Llama index settings | |
# Settings.llm = HuggingFaceInferenceAPI( | |
# model_name="xlm-roberta-base", | |
# tokenizer_name="xlm-roberta-base", | |
# context_window=3000, | |
# token=HF_TOKEN, | |
# max_new_tokens=512, | |
# generate_kwargs={"temperature": 0.1}, | |
# ) | |
# Settings.embed_model = HuggingFaceEmbedding( | |
# model_name="sentence-transformers/paraphrase-xlm-r-100langs-v1" | |
# ) | |
# Configure Llama index settings | |
Settings.llm = HuggingFaceInferenceAPI( | |
model_name=repo_id, | |
tokenizer_name=repo_id, | |
context_window=3000, | |
token=HF_TOKEN, | |
max_new_tokens=512, | |
generate_kwargs={"temperature": 0.1}, | |
) | |
Settings.embed_model = HuggingFaceEmbedding( | |
model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2" # Updated model name | |
) | |
PERSIST_DIR = "db" | |
PDF_DIRECTORY = 'data' | |
# Ensure directories exist | |
os.makedirs(PDF_DIRECTORY, exist_ok=True) | |
os.makedirs(PERSIST_DIR, exist_ok=True) | |
chat_history = [] | |
current_chat_history = [] | |
def data_ingestion_from_directory(): | |
# Clear previous data by removing the persist directory | |
if os.path.exists(PERSIST_DIR): | |
shutil.rmtree(PERSIST_DIR) # Remove the persist directory and all its contents | |
# Recreate the persist directory after removal | |
os.makedirs(PERSIST_DIR, exist_ok=True) | |
# Load new documents from the directory | |
new_documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data() | |
# Create a new index with the new documents | |
index = VectorStoreIndex.from_documents(new_documents) | |
# Persist the new index | |
index.storage_context.persist(persist_dir=PERSIST_DIR) | |
def handle_query(query): | |
# chat_text_qa_msgs = [ | |
# ( | |
# "user", | |
# """ | |
# You are the Taj Hotel chatbot, known as Taj Hotel Helper. Your goal is to provide accurate and professional answers to user queries based on the information available about the Taj Hotel. Always respond clearly and concisely, ideally within 10-15 words. If you don't know the answer, say so politely. | |
# Context: | |
# {context_str} | |
# User's Question: | |
# {query_str} | |
# """ | |
# ) | |
# ] | |
chat_text_qa_msgs = [ | |
( | |
"user", | |
""" | |
You are the Taj Hotel chatbot, known as Taj Hotel Helper. | |
Your goal is to provide accurate and professional answers to | |
user queries about the Taj Hotel in the language they use: | |
English, Telugu, or Hindi. Always respond clearly and concisely, | |
ideally within 10-15 words. If you don't know the answer, say so politely. | |
Context: | |
{context_str} | |
User's Question: | |
{query_str} | |
Language-Specific Guidance: | |
- For English: Respond in English. | |
- For Telugu: తెలుగు లో సమాధానం ఇవ్వండి. | |
- For Hindi: हिंदी में उत्तर दें. | |
""" | |
) | |
] | |
text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs) | |
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR) | |
index = load_index_from_storage(storage_context) | |
context_str = "" | |
# Build context from current chat history | |
for past_query, response in reversed(current_chat_history): | |
if past_query.strip(): | |
context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n" | |
query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str) | |
print(f"Querying: {query}") | |
answer = query_engine.query(query) | |
# Extracting the response | |
if hasattr(answer, 'response'): | |
response = answer.response | |
elif isinstance(answer, dict) and 'response' in answer: | |
response = answer['response'] | |
else: | |
response = "I'm sorry, I couldn't find an answer to that." | |
# Append to chat history | |
current_chat_history.append((query, response)) | |
return response | |
app = Flask(__name__) | |
# Data ingestion | |
data_ingestion_from_directory() | |
# Generate Response | |
def generate_response(query): | |
try: | |
# Call the handle_query function to get the response | |
bot_response = handle_query(query) | |
return bot_response | |
except Exception as e: | |
return f"Error fetching the response: {str(e)}" | |
# Route for the homepage | |
def index(): | |
return render_template('index.html') | |
# Route to handle chatbot messages | |
def chat(): | |
try: | |
user_message = request.json.get("message") | |
if not user_message: | |
return jsonify({"response": "Please say something!"}) | |
bot_response = generate_response(user_message) | |
return jsonify({"response": bot_response}) | |
except Exception as e: | |
return jsonify({"response": f"An error occurred: {str(e)}"}) | |
if __name__ == '__main__': | |
app.run(debug=True) |