Spaces:
Running
Running
File size: 6,272 Bytes
f5c5e39 0e3c01c f5c5e39 938fd74 6db9ccd f5c5e39 0e3c01c f5c5e39 938fd74 f5c5e39 6db9ccd 938fd74 f5c5e39 16d15ab f5c5e39 16d15ab f5c5e39 81ab56f f5c5e39 3c88d1c f5c5e39 938fd74 c32fec2 f5c5e39 3c88d1c f5c5e39 c32fec2 f5c5e39 c32fec2 f5c5e39 c32fec2 f5c5e39 c32fec2 f5c5e39 c32fec2 f5c5e39 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
import os
import shutil
from flask import Flask, render_template, request, jsonify
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from huggingface_hub import InferenceClient
# Ensure HF_TOKEN is set
HF_TOKEN = os.getenv("HF_TOKEN")
if not HF_TOKEN:
raise ValueError("HF_TOKEN environment variable not set.")
repo_id = "FacebookAI/xlm-roberta-base"
llm_client = InferenceClient(
model=repo_id,
token=HF_TOKEN,
)
# Configure Llama index settings
# Settings.llm = HuggingFaceInferenceAPI(
# model_name=repo_id,
# tokenizer_name=repo_id,
# context_window=3000,
# token=HF_TOKEN,
# max_new_tokens=512,
# generate_kwargs={"temperature": 0.1},
# )
# Settings.embed_model = HuggingFaceEmbedding(
# model_name="BAAI/bge-small-en-v1.5"
# )
# # Configure Llama index settings
# Settings.llm = HuggingFaceInferenceAPI(
# model_name="xlm-roberta-base",
# tokenizer_name="xlm-roberta-base",
# context_window=3000,
# token=HF_TOKEN,
# max_new_tokens=512,
# generate_kwargs={"temperature": 0.1},
# )
# Settings.embed_model = HuggingFaceEmbedding(
# model_name="sentence-transformers/paraphrase-xlm-r-100langs-v1"
# )
# Configure Llama index settings
Settings.llm = HuggingFaceInferenceAPI(
model_name=repo_id,
tokenizer_name=repo_id,
context_window=3000,
token=HF_TOKEN,
max_new_tokens=512,
generate_kwargs={"temperature": 0.1},
)
Settings.embed_model = HuggingFaceEmbedding(
model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2" # Updated model name
)
PERSIST_DIR = "db"
PDF_DIRECTORY = 'data'
# Ensure directories exist
os.makedirs(PDF_DIRECTORY, exist_ok=True)
os.makedirs(PERSIST_DIR, exist_ok=True)
chat_history = []
current_chat_history = []
def data_ingestion_from_directory():
# Clear previous data by removing the persist directory
if os.path.exists(PERSIST_DIR):
shutil.rmtree(PERSIST_DIR) # Remove the persist directory and all its contents
# Recreate the persist directory after removal
os.makedirs(PERSIST_DIR, exist_ok=True)
# Load new documents from the directory
new_documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data()
# Create a new index with the new documents
index = VectorStoreIndex.from_documents(new_documents)
# Persist the new index
index.storage_context.persist(persist_dir=PERSIST_DIR)
def handle_query(query):
# chat_text_qa_msgs = [
# (
# "user",
# """
# You are the Taj Hotel chatbot, known as Taj Hotel Helper. Your goal is to provide accurate and professional answers to user queries based on the information available about the Taj Hotel. Always respond clearly and concisely, ideally within 10-15 words. If you don't know the answer, say so politely.
# Context:
# {context_str}
# User's Question:
# {query_str}
# """
# )
# ]
chat_text_qa_msgs = [
(
"user",
"""
You are the Taj Hotel chatbot, known as Taj Hotel Helper.
Your goal is to provide accurate and professional answers to
user queries about the Taj Hotel in the language they use:
English, Telugu, or Hindi. Always respond clearly and concisely,
ideally within 10-15 words. If you don't know the answer, say so politely.
Context:
{context_str}
User's Question:
{query_str}
Language-Specific Guidance:
- For English: Respond in English.
- For Telugu: తెలుగు లో సమాధానం ఇవ్వండి.
- For Hindi: हिंदी में उत्तर दें.
"""
)
]
text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
index = load_index_from_storage(storage_context)
context_str = ""
# Build context from current chat history
for past_query, response in reversed(current_chat_history):
if past_query.strip():
context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n"
query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str)
print(f"Querying: {query}")
answer = query_engine.query(query)
# Extracting the response
if hasattr(answer, 'response'):
response = answer.response
elif isinstance(answer, dict) and 'response' in answer:
response = answer['response']
else:
response = "I'm sorry, I couldn't find an answer to that."
# Append to chat history
current_chat_history.append((query, response))
return response
app = Flask(__name__)
# Data ingestion
data_ingestion_from_directory()
# Generate Response
def generate_response(query):
try:
# Call the handle_query function to get the response
bot_response = handle_query(query)
return bot_response
except Exception as e:
return f"Error fetching the response: {str(e)}"
# Route for the homepage
@app.route('/')
def index():
return render_template('index.html')
# Route to handle chatbot messages
@app.route('/chat', methods=['POST'])
def chat():
try:
user_message = request.json.get("message")
if not user_message:
return jsonify({"response": "Please say something!"})
bot_response = generate_response(user_message)
return jsonify({"response": bot_response})
except Exception as e:
return jsonify({"response": f"An error occurred: {str(e)}"})
if __name__ == '__main__':
app.run(debug=True) |