Spaces:
Running
Running
Update main.py
Browse files
main.py
CHANGED
@@ -1,5 +1,78 @@
|
|
1 |
from flask import Flask, render_template, request, jsonify
|
2 |
from gradio_client import Client
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
app = Flask(__name__)
|
5 |
|
@@ -10,16 +83,25 @@ except Exception as e:
|
|
10 |
print(f"Error initializing Gradio client: {str(e)}")
|
11 |
client = None
|
12 |
|
13 |
-
# Function to fetch the response from Gradio model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
def generate_response(query):
|
15 |
-
if client is None:
|
16 |
-
return "Model is unavailable at the moment. Please try again later."
|
17 |
try:
|
18 |
-
|
19 |
-
|
|
|
20 |
except Exception as e:
|
21 |
return f"Error fetching the response: {str(e)}"
|
22 |
|
|
|
23 |
# Route for the homepage
|
24 |
@app.route('/')
|
25 |
def index():
|
|
|
1 |
from flask import Flask, render_template, request, jsonify
|
2 |
from gradio_client import Client
|
3 |
+
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings
|
4 |
+
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
|
5 |
+
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
6 |
+
from huggingface_hub import InferenceClient
|
7 |
+
|
8 |
+
repo_id = "meta-llama/Meta-Llama-3-8B-Instruct"
|
9 |
+
llm_client = InferenceClient(
|
10 |
+
model=repo_id,
|
11 |
+
token=os.getenv("HF_TOKEN"),
|
12 |
+
)
|
13 |
+
|
14 |
+
os.environ["HF_TOKEN"] = os.getenv("HF_TOKEN")
|
15 |
+
# Configure Llama index settings
|
16 |
+
Settings.llm = HuggingFaceInferenceAPI(
|
17 |
+
model_name="meta-llama/Meta-Llama-3-8B-Instruct",
|
18 |
+
tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct",
|
19 |
+
context_window=3000,
|
20 |
+
token=os.getenv("HF_TOKEN"),
|
21 |
+
max_new_tokens=512,
|
22 |
+
generate_kwargs={"temperature": 0.1},
|
23 |
+
)
|
24 |
+
Settings.embed_model = HuggingFaceEmbedding(
|
25 |
+
model_name="BAAI/bge-small-en-v1.5"
|
26 |
+
)
|
27 |
+
|
28 |
+
PERSIST_DIR = "db"
|
29 |
+
PDF_DIRECTORY = 'data'
|
30 |
+
|
31 |
+
# Ensure directories exist
|
32 |
+
os.makedirs(PDF_DIRECTORY, exist_ok=True)
|
33 |
+
os.makedirs(PERSIST_DIR, exist_ok=True)
|
34 |
+
chat_history = []
|
35 |
+
current_chat_history = []
|
36 |
+
|
37 |
+
def data_ingestion_from_directory():
|
38 |
+
documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data()
|
39 |
+
storage_context = StorageContext.from_defaults()
|
40 |
+
index = VectorStoreIndex.from_documents(documents)
|
41 |
+
index.storage_context.persist(persist_dir=PERSIST_DIR)
|
42 |
+
|
43 |
+
def handle_query(query):
|
44 |
+
chat_text_qa_msgs = [
|
45 |
+
(
|
46 |
+
"user",
|
47 |
+
"""
|
48 |
+
You are the Hotel voice chatbot and your name is hotel helper. Your goal is to provide accurate, professional, and helpful answers to user queries based on the hotel's data. Always ensure your responses are clear and concise. Give response within 10-15 words only. You need to give an answer in the same language used by the user.
|
49 |
+
{context_str}
|
50 |
+
Question:
|
51 |
+
{query_str}
|
52 |
+
"""
|
53 |
+
)
|
54 |
+
]
|
55 |
+
text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
|
56 |
+
|
57 |
+
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
|
58 |
+
index = load_index_from_storage(storage_context)
|
59 |
+
context_str = ""
|
60 |
+
for past_query, response in reversed(current_chat_history):
|
61 |
+
if past_query.strip():
|
62 |
+
context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n"
|
63 |
+
|
64 |
+
query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str)
|
65 |
+
print(query)
|
66 |
+
answer = query_engine.query(query)
|
67 |
+
|
68 |
+
if hasattr(answer, 'response'):
|
69 |
+
response = answer.response
|
70 |
+
elif isinstance(answer, dict) and 'response' in answer:
|
71 |
+
response = answer['response']
|
72 |
+
else:
|
73 |
+
response = "Sorry, I couldn't find an answer."
|
74 |
+
current_chat_history.append((query, response))
|
75 |
+
return response
|
76 |
|
77 |
app = Flask(__name__)
|
78 |
|
|
|
83 |
print(f"Error initializing Gradio client: {str(e)}")
|
84 |
client = None
|
85 |
|
86 |
+
# # Function to fetch the response from Gradio model
|
87 |
+
# def generate_response(query):
|
88 |
+
# if client is None:
|
89 |
+
# return "Model is unavailable at the moment. Please try again later."
|
90 |
+
# try:
|
91 |
+
# result = client.predict(query=query, api_name="/predict")
|
92 |
+
# return result
|
93 |
+
# except Exception as e:
|
94 |
+
# return f"Error fetching the response: {str(e)}"
|
95 |
+
# Generate Response
|
96 |
def generate_response(query):
|
|
|
|
|
97 |
try:
|
98 |
+
# Call the handle_query function to get the response
|
99 |
+
bot_response = handle_query(query)
|
100 |
+
return bot_response
|
101 |
except Exception as e:
|
102 |
return f"Error fetching the response: {str(e)}"
|
103 |
|
104 |
+
|
105 |
# Route for the homepage
|
106 |
@app.route('/')
|
107 |
def index():
|