Spaces:
Running
Running
File size: 17,605 Bytes
a6dac5d 4e5040c 82bfd91 a6dac5d 82bfd91 a6dac5d da79ef9 a6dac5d da79ef9 a6dac5d 4e5040c a6dac5d 4e5040c a6dac5d 4e5040c a6dac5d 4e5040c a6dac5d 4e5040c a6dac5d 534040e a6dac5d 82bfd91 a6dac5d 82bfd91 a6dac5d 7ab6752 a6dac5d 7c59f65 a6dac5d 534040e a6dac5d 534040e 67005eb a6dac5d 67005eb 7ab6752 67005eb a6dac5d 67005eb a6dac5d 67005eb a6dac5d 67005eb 82bfd91 67005eb 82bfd91 67005eb a6dac5d 67005eb a6dac5d 67005eb 82bfd91 a6dac5d 82bfd91 a6dac5d 82bfd91 8cf1ab9 82bfd91 67005eb 8cf1ab9 67005eb 8cf1ab9 67005eb 8cf1ab9 67005eb 8cf1ab9 67005eb 8cf1ab9 67005eb 8cf1ab9 67005eb 82bfd91 8cf1ab9 82bfd91 67005eb 82bfd91 a6dac5d 82bfd91 a6dac5d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 |
import os
import shutil
from flask import Flask, render_template, request, jsonify
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from huggingface_hub import InferenceClient
from transformers import AutoTokenizer, AutoModel
from deep_translator import GoogleTranslator
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
from accelerate import infer_auto_device_map
# Ensure HF_TOKEN is set
HF_TOKEN = os.getenv("HF_TOKEN")
if not HF_TOKEN:
raise ValueError("HF_TOKEN environment variable not set.")
# repo_id = "meta-llama/Meta-Llama-3-8B-Instruct"
repo_id = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B"
llm_client = InferenceClient(
model=repo_id,
token=HF_TOKEN,
)
# # Configure Llama index settings
# Settings.llm = HuggingFaceInferenceAPI(
# model_name=repo_id,
# tokenizer_name=repo_id,
# context_window=3000,
# token=HF_TOKEN,
# max_new_tokens=512,
# generate_kwargs={"temperature": 0.1},
# )
# Configure Llama index settings with the new model
# Settings.llm = HuggingFaceInferenceAPI(
# model_name=repo_id,
# tokenizer_name=repo_id, # Use the same tokenizer as the model
# context_window=3000,
# token=HF_TOKEN,
# max_new_tokens=512,
# generate_kwargs={"temperature": 0.1},
# )
# Settings.embed_model = HuggingFaceEmbedding(
# model_name="BAAI/bge-small-en-v1.5"
# )
# Replace the embedding model with XLM-R
# Settings.embed_model = HuggingFaceEmbedding(
# model_name="xlm-roberta-base" # XLM-RoBERTa model for multilingual support
# )
# Settings.embed_model = HuggingFaceEmbedding(
# model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
# )
# # Configure tokenizer and model if required
# tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-base")
# model = AutoModel.from_pretrained("xlm-roberta-base")
# Configure tokenizer and model if required
tokenizer = AutoTokenizer.from_pretrained(repo_id) # Use the tokenizer from the new model
# model = AutoModel.from_pretrained(repo_id) # Load the new model
model = AutoModelForCausalLM.from_pretrained(
repo_id,
load_in_4bit=True, # Load in 4-bit quantization
torch_dtype=torch.float16,
device_map="auto",
)
# Configure Llama index settings
Settings.llm = HuggingFaceInferenceAPI(
model_name=repo_id,
tokenizer_name=repo_id, # Use the same tokenizer as the model
context_window=2048, # Reduce context window to save memory
token=HF_TOKEN,
max_new_tokens=256, # Reduce max tokens to save memory
generate_kwargs={"temperature": 0.1},
)
# Use a smaller embedding model
Settings.embed_model = HuggingFaceEmbedding(
model_name="sentence-transformers/all-MiniLM-L6-v2" # Smaller and faster
)
PERSIST_DIR = "db"
PDF_DIRECTORY = 'data'
# Ensure directories exist
os.makedirs(PDF_DIRECTORY, exist_ok=True)
os.makedirs(PERSIST_DIR, exist_ok=True)
chat_history = []
current_chat_history = []
def data_ingestion_from_directory():
# Clear previous data by removing the persist directory
if os.path.exists(PERSIST_DIR):
shutil.rmtree(PERSIST_DIR) # Remove the persist directory and all its contents
# Recreate the persist directory after removal
os.makedirs(PERSIST_DIR, exist_ok=True)
# Load new documents from the directory
new_documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data()
# Create a new index with the new documents
index = VectorStoreIndex.from_documents(new_documents)
# Persist the new index
index.storage_context.persist(persist_dir=PERSIST_DIR)
# def handle_query(query):
# context_str = ""
# # Build context from current chat history
# for past_query, response in reversed(current_chat_history):
# if past_query.strip():
# context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n"
# chat_text_qa_msgs = [
# (
# "user",
# """
# You are the Taj Hotel voice chatbot and your name is Taj hotel helper. Your goal is to provide accurate, professional, and helpful answers to user queries based on the Taj hotel data. Always ensure your responses are clear and concise. Give response within 10-15 words only. You need to give an answer in the same language used by the user.
# {context_str}
# Question:
# {query_str}
# """
# )
# ]
# text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
# storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
# index = load_index_from_storage(storage_context)
# # context_str = ""
# # # Build context from current chat history
# # for past_query, response in reversed(current_chat_history):
# # if past_query.strip():
# # context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n"
# query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str)
# print(f"Querying: {query}")
# answer = query_engine.query(query)
# # Extracting the response
# if hasattr(answer, 'response'):
# response = answer.response
# elif isinstance(answer, dict) and 'response' in answer:
# response = answer['response']
# else:
# response = "I'm sorry, I couldn't find an answer to that."
# # Append to chat history
# current_chat_history.append((query, response))
# return response
def handle_query(query):
chat_text_qa_msgs = [
(
"user",
"""
You are the Hotel voice chatbot and your name is hotel helper. Your goal is to provide accurate, professional, and helpful answers to user queries based on the hotel's data. Always ensure your responses are clear and concise. Give response within 10-15 words only. You need to give an answer in the same language used by the user.
{context_str}
Question:
{query_str}
"""
)
]
text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
index = load_index_from_storage(storage_context)
context_str = ""
for past_query, response in reversed(current_chat_history):
if past_query.strip():
context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n"
query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str)
print(query)
answer = query_engine.query(query)
if hasattr(answer, 'response'):
response = answer.response
elif isinstance(answer, dict) and 'response' in answer:
response = answer['response']
else:
response = "Sorry, I couldn't find an answer."
current_chat_history.append((query, response))
return response
app = Flask(__name__)
# Data ingestion
data_ingestion_from_directory()
# Generate Response
def generate_response(query, language):
try:
# Call the handle_query function to get the response
bot_response = handle_query(query)
# Map of supported languages
supported_languages = {
"hindi": "hi",
"bengali": "bn",
"telugu": "te",
"marathi": "mr",
"tamil": "ta",
"gujarati": "gu",
"kannada": "kn",
"malayalam": "ml",
"punjabi": "pa",
"odia": "or",
"urdu": "ur",
"assamese": "as",
"sanskrit": "sa",
"arabic": "ar",
"australian": "en-AU",
"bangla-india": "bn-IN",
"chinese": "zh-CN",
"dutch": "nl",
"french": "fr",
"filipino": "tl",
"greek": "el",
"indonesian": "id",
"italian": "it",
"japanese": "ja",
"korean": "ko",
"latin": "la",
"nepali": "ne",
"portuguese": "pt",
"romanian": "ro",
"russian": "ru",
"spanish": "es",
"swedish": "sv",
"thai": "th",
"ukrainian": "uk",
"turkish": "tr"
}
# Initialize the translated text
translated_text = bot_response
# Translate only if the language is supported and not English
try:
if language in supported_languages:
target_lang = supported_languages[language]
translated_text = GoogleTranslator(source='en', target=target_lang).translate(bot_response)
print(translated_text)
else:
print(f"Unsupported language: {language}")
except Exception as e:
# Handle translation errors
print(f"Translation error: {e}")
translated_text = "Sorry, I couldn't translate the response."
# Append to chat history
chat_history.append((query, translated_text))
return translated_text
except Exception as e:
return f"Error fetching the response: {str(e)}"
# Route for the homepage
@app.route('/')
def index():
return render_template('index.html')
# Route to handle chatbot messages
@app.route('/chat', methods=['POST'])
def chat():
try:
user_message = request.json.get("message")
language = request.json.get("language")
if not user_message:
return jsonify({"response": "Please say something!"})
bot_response = generate_response(user_message,language)
return jsonify({"response": bot_response})
except Exception as e:
return jsonify({"response": f"An error occurred: {str(e)}"})
if __name__ == '__main__':
app.run(debug=True)
# import os
# import shutil
# from flask import Flask, render_template, request, jsonify
# from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings
# from llama_index.llms.huggingface import HuggingFaceInferenceAPI
# from llama_index.embeddings.huggingface import HuggingFaceEmbedding
# from huggingface_hub import InferenceClient
# from transformers import AutoTokenizer, AutoModelForCausalLM
# from deep_translator import GoogleTranslator
# import torch
# # Ensure HF_TOKEN is set
# HF_TOKEN = os.getenv("HF_TOKEN")
# if not HF_TOKEN:
# raise ValueError("HF_TOKEN environment variable not set.")
# # Model configuration
# repo_id = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B"
# # Load tokenizer
# tokenizer = AutoTokenizer.from_pretrained(repo_id)
# # Load quantized model
# try:
# model = AutoModelForCausalLM.from_pretrained(
# repo_id,
# device_map="auto", # Automatically distribute across available devices
# load_in_8bit=True, # Quantize to 8-bit precision
# torch_dtype=torch.float16 # Use 16-bit precision
# )
# except ImportError:
# raise ImportError("The 'bitsandbytes' library is required for quantization. Please install it using `pip install bitsandbytes`.")
# # Configure Llama index settings
# Settings.llm = HuggingFaceInferenceAPI(
# model_name=repo_id,
# tokenizer_name=repo_id, # Use the same tokenizer as the model
# context_window=2048, # Reduce context window to save memory
# token=HF_TOKEN,
# max_new_tokens=256, # Reduce max tokens to save memory
# generate_kwargs={"temperature": 0.1},
# )
# # Use a smaller embedding model
# Settings.embed_model = HuggingFaceEmbedding(
# model_name="sentence-transformers/all-MiniLM-L6-v2" # Smaller and faster
# )
# # Directories
# PERSIST_DIR = "db"
# PDF_DIRECTORY = 'data'
# # Ensure directories exist
# os.makedirs(PDF_DIRECTORY, exist_ok=True)
# os.makedirs(PERSIST_DIR, exist_ok=True)
# chat_history = []
# current_chat_history = []
# def data_ingestion_from_directory():
# # Clear previous data by removing the persist directory
# if os.path.exists(PERSIST_DIR):
# shutil.rmtree(PERSIST_DIR) # Remove the persist directory and all its contents
# # Recreate the persist directory after removal
# os.makedirs(PERSIST_DIR, exist_ok=True)
# # Load new documents from the directory
# new_documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data()
# # Create a new index with the new documents
# index = VectorStoreIndex.from_documents(new_documents)
# # Persist the new index
# index.storage_context.persist(persist_dir=PERSIST_DIR)
# def handle_query(query):
# chat_text_qa_msgs = [
# (
# "user",
# """
# You are the Hotel voice chatbot and your name is hotel helper. Your goal is to provide accurate, professional, and helpful answers to user queries based on the hotel's data. Always ensure your responses are clear and concise. Give response within 10-15 words only. You need to give an answer in the same language used by the user.
# {context_str}
# Question:
# {query_str}
# """
# )
# ]
# text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
# storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
# index = load_index_from_storage(storage_context)
# context_str = ""
# for past_query, response in reversed(current_chat_history):
# if past_query.strip():
# context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n"
# query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str)
# print(query)
# answer = query_engine.query(query)
# if hasattr(answer, 'response'):
# response = answer.response
# elif isinstance(answer, dict) and 'response' in answer:
# response = answer['response']
# else:
# response = "Sorry, I couldn't find an answer."
# current_chat_history.append((query, response))
# return response
# app = Flask(__name__)
# # Data ingestion
# data_ingestion_from_directory()
# # Generate Response
# def generate_response(query, language):
# try:
# # Call the handle_query function to get the response
# bot_response = handle_query(query)
# # Map of supported languages
# supported_languages = {
# "hindi": "hi",
# "bengali": "bn",
# "telugu": "te",
# "marathi": "mr",
# "tamil": "ta",
# "gujarati": "gu",
# "kannada": "kn",
# "malayalam": "ml",
# "punjabi": "pa",
# "odia": "or",
# "urdu": "ur",
# "assamese": "as",
# "sanskrit": "sa",
# "arabic": "ar",
# "australian": "en-AU",
# "bangla-india": "bn-IN",
# "chinese": "zh-CN",
# "dutch": "nl",
# "french": "fr",
# "filipino": "tl",
# "greek": "el",
# "indonesian": "id",
# "italian": "it",
# "japanese": "ja",
# "korean": "ko",
# "latin": "la",
# "nepali": "ne",
# "portuguese": "pt",
# "romanian": "ro",
# "russian": "ru",
# "spanish": "es",
# "swedish": "sv",
# "thai": "th",
# "ukrainian": "uk",
# "turkish": "tr"
# }
# # Initialize the translated text
# translated_text = bot_response
# # Translate only if the language is supported and not English
# try:
# if language in supported_languages:
# target_lang = supported_languages[language]
# translated_text = GoogleTranslator(source='en', target=target_lang).translate(bot_response)
# print(translated_text)
# else:
# print(f"Unsupported language: {language}")
# except Exception as e:
# # Handle translation errors
# print(f"Translation error: {e}")
# translated_text = "Sorry, I couldn't translate the response."
# # Append to chat history
# chat_history.append((query, translated_text))
# return translated_text
# except Exception as e:
# return f"Error fetching the response: {str(e)}"
# # Route for the homepage
# @app.route('/')
# def index():
# return render_template('index.html')
# # Route to handle chatbot messages
# @app.route('/chat', methods=['POST'])
# def chat():
# try:
# user_message = request.json.get("message")
# language = request.json.get("language")
# if not user_message:
# return jsonify({"response": "Please say something!"})
# bot_response = generate_response(user_message, language)
# return jsonify({"response": bot_response})
# except Exception as e:
# return jsonify({"response": f"An error occurred: {str(e)}"})
# if __name__ == '__main__':
# app.run(debug=True) |