File size: 17,605 Bytes
a6dac5d
 
 
 
 
 
 
 
 
 
 
 
4e5040c
82bfd91
 
a6dac5d
 
 
 
82bfd91
a6dac5d
 
 
 
 
 
 
 
 
 
 
 
da79ef9
a6dac5d
 
da79ef9
a6dac5d
4e5040c
 
 
a6dac5d
4e5040c
a6dac5d
4e5040c
 
a6dac5d
 
 
 
4e5040c
a6dac5d
4e5040c
a6dac5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
534040e
a6dac5d
 
82bfd91
a6dac5d
 
82bfd91
a6dac5d
 
7ab6752
a6dac5d
 
7c59f65
a6dac5d
 
534040e
a6dac5d
 
 
 
534040e
67005eb
 
 
 
a6dac5d
67005eb
 
 
 
 
 
7ab6752
 
67005eb
a6dac5d
67005eb
a6dac5d
 
 
67005eb
a6dac5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67005eb
82bfd91
 
 
 
 
 
 
 
 
 
 
67005eb
82bfd91
67005eb
 
 
 
 
 
a6dac5d
67005eb
 
 
a6dac5d
67005eb
 
 
 
 
 
 
82bfd91
 
a6dac5d
82bfd91
a6dac5d
 
82bfd91
8cf1ab9
 
82bfd91
 
67005eb
8cf1ab9
 
 
67005eb
 
 
 
 
 
 
 
 
 
 
 
8cf1ab9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67005eb
8cf1ab9
 
67005eb
8cf1ab9
 
67005eb
8cf1ab9
 
 
 
 
 
67005eb
 
 
8cf1ab9
 
 
 
67005eb
82bfd91
8cf1ab9
82bfd91
 
 
 
 
 
 
 
 
 
67005eb
 
82bfd91
 
a6dac5d
 
82bfd91
 
 
 
 
a6dac5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
import os  
import shutil  
from flask import Flask, render_template, request, jsonify  
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings  
from llama_index.llms.huggingface import HuggingFaceInferenceAPI  
from llama_index.embeddings.huggingface import HuggingFaceEmbedding  
from huggingface_hub import InferenceClient  
from transformers import AutoTokenizer, AutoModel
from deep_translator import GoogleTranslator
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
from accelerate import infer_auto_device_map



# Ensure HF_TOKEN is set  
HF_TOKEN = os.getenv("HF_TOKEN")  
if not HF_TOKEN:  
    raise ValueError("HF_TOKEN environment variable not set.")  

# repo_id = "meta-llama/Meta-Llama-3-8B-Instruct" 
repo_id = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B"
llm_client = InferenceClient(  
    model=repo_id,  
    token=HF_TOKEN,  
)  

# # Configure Llama index settings  
# Settings.llm = HuggingFaceInferenceAPI(  
#     model_name=repo_id,  
#     tokenizer_name=repo_id,  
#     context_window=3000,  
#     token=HF_TOKEN,  
#     max_new_tokens=512,  
#     generate_kwargs={"temperature": 0.1},  
# )  
# Configure Llama index settings with the new model
# Settings.llm = HuggingFaceInferenceAPI(
#     model_name=repo_id,
#     tokenizer_name=repo_id,  # Use the same tokenizer as the model
#     context_window=3000,
#     token=HF_TOKEN,
#     max_new_tokens=512,
#     generate_kwargs={"temperature": 0.1},
# )
# Settings.embed_model = HuggingFaceEmbedding(  
#     model_name="BAAI/bge-small-en-v1.5"  
# )  
# Replace the embedding model with XLM-R
# Settings.embed_model = HuggingFaceEmbedding(
#     model_name="xlm-roberta-base"  # XLM-RoBERTa model for multilingual support
# )
# Settings.embed_model = HuggingFaceEmbedding(
#     model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
# )

# # Configure tokenizer and model if required
# tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-base")
# model = AutoModel.from_pretrained("xlm-roberta-base")
# Configure tokenizer and model if required
tokenizer = AutoTokenizer.from_pretrained(repo_id)  # Use the tokenizer from the new model
# model = AutoModel.from_pretrained(repo_id)  # Load the new model
model = AutoModelForCausalLM.from_pretrained(
    repo_id,
    load_in_4bit=True,  # Load in 4-bit quantization
    torch_dtype=torch.float16,
    device_map="auto",
)
# Configure Llama index settings
Settings.llm = HuggingFaceInferenceAPI(
    model_name=repo_id,
    tokenizer_name=repo_id,  # Use the same tokenizer as the model
    context_window=2048,  # Reduce context window to save memory
    token=HF_TOKEN,
    max_new_tokens=256,  # Reduce max tokens to save memory
    generate_kwargs={"temperature": 0.1},
)
# Use a smaller embedding model
Settings.embed_model = HuggingFaceEmbedding(
    model_name="sentence-transformers/all-MiniLM-L6-v2"  # Smaller and faster
)
PERSIST_DIR = "db"  
PDF_DIRECTORY = 'data'  

# Ensure directories exist  
os.makedirs(PDF_DIRECTORY, exist_ok=True)  
os.makedirs(PERSIST_DIR, exist_ok=True)  
chat_history = []  
current_chat_history = []  

def data_ingestion_from_directory():  
    # Clear previous data by removing the persist directory  
    if os.path.exists(PERSIST_DIR):  
        shutil.rmtree(PERSIST_DIR)  # Remove the persist directory and all its contents  
    
    # Recreate the persist directory after removal  
    os.makedirs(PERSIST_DIR, exist_ok=True)  
    
    # Load new documents from the directory  
    new_documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data()  
    
    # Create a new index with the new documents  
    index = VectorStoreIndex.from_documents(new_documents)  
    
    # Persist the new index  
    index.storage_context.persist(persist_dir=PERSIST_DIR)  

# def handle_query(query):  
#     context_str = ""  
    
#     # Build context from current chat history  
#     for past_query, response in reversed(current_chat_history):  
#         if past_query.strip():  
#             context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n"  
    
#     chat_text_qa_msgs = [
#         (
#             "user",
#             """
#             You are the Taj Hotel voice chatbot and your name is Taj hotel helper. Your goal is to provide accurate, professional, and helpful answers to user queries based on the Taj hotel data. Always ensure your responses are clear and concise. Give response within 10-15 words only. You need to give an answer in the same language used by the user.       
#             {context_str}
#             Question:
#             {query_str}
#             """
#         )
#     ]


    
#     text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)  
    
#     storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)  
#     index = load_index_from_storage(storage_context)  
#     # context_str = ""  
    
#     # # Build context from current chat history  
#     # for past_query, response in reversed(current_chat_history):  
#     #     if past_query.strip():  
#     #         context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n"  

#     query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str)  
#     print(f"Querying: {query}")  
#     answer = query_engine.query(query)  

#     # Extracting the response  
#     if hasattr(answer, 'response'):  
#         response = answer.response  
#     elif isinstance(answer, dict) and 'response' in answer:  
#         response = answer['response']  
#     else:  
#         response = "I'm sorry, I couldn't find an answer to that."  

#     # Append to chat history  
#     current_chat_history.append((query, response))  
#     return response
def handle_query(query):
    chat_text_qa_msgs = [
        (
            "user",
            """
            You are the Hotel voice chatbot and your name is hotel helper. Your goal is to provide accurate, professional, and helpful answers to user queries based on the hotel's data. Always ensure your responses are clear and concise. Give response within 10-15 words only. You need to give an answer in the same language used by the user.       
            {context_str}
            Question:
            {query_str}
            """
        )
    ]
    text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
    
    storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
    index = load_index_from_storage(storage_context)
    context_str = ""
    for past_query, response in reversed(current_chat_history):
        if past_query.strip():
            context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n"

    query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str)
    print(query)
    answer = query_engine.query(query)

    if hasattr(answer, 'response'):
        response = answer.response
    elif isinstance(answer, dict) and 'response' in answer:
        response = answer['response']
    else:
        response = "Sorry, I couldn't find an answer."
    current_chat_history.append((query, response))
    return response

app = Flask(__name__)  

# Data ingestion  
data_ingestion_from_directory()  

# Generate Response
def generate_response(query, language):  
    try:  
        # Call the handle_query function to get the response  
        bot_response = handle_query(query)
        
        # Map of supported languages
        supported_languages = {
            "hindi": "hi",
            "bengali": "bn",
            "telugu": "te",
            "marathi": "mr",
            "tamil": "ta",
            "gujarati": "gu",
            "kannada": "kn",
            "malayalam": "ml",
            "punjabi": "pa",
            "odia": "or",
            "urdu": "ur",
            "assamese": "as",
            "sanskrit": "sa",
            "arabic": "ar",
            "australian": "en-AU",
            "bangla-india": "bn-IN",
            "chinese": "zh-CN",
            "dutch": "nl",
            "french": "fr",
            "filipino": "tl",
            "greek": "el",
            "indonesian": "id",
            "italian": "it",
            "japanese": "ja",
            "korean": "ko",
            "latin": "la",
            "nepali": "ne",
            "portuguese": "pt",
            "romanian": "ro",
            "russian": "ru",
            "spanish": "es",
            "swedish": "sv",
            "thai": "th",
            "ukrainian": "uk",
            "turkish": "tr"
        }
        
        # Initialize the translated text
        translated_text = bot_response
        
        # Translate only if the language is supported and not English
        try:
            if language in supported_languages:
                target_lang = supported_languages[language]
                translated_text = GoogleTranslator(source='en', target=target_lang).translate(bot_response)
                print(translated_text)
            else:
                print(f"Unsupported language: {language}")
        except Exception as e:
            # Handle translation errors
            print(f"Translation error: {e}")
            translated_text = "Sorry, I couldn't translate the response."
        
        # Append to chat history
        chat_history.append((query, translated_text))
        return translated_text  
    except Exception as e:  
        return f"Error fetching the response: {str(e)}"

# Route for the homepage  
@app.route('/')  
def index():  
    return render_template('index.html')  

# Route to handle chatbot messages  
@app.route('/chat', methods=['POST'])  
def chat():  
    try:  
        user_message = request.json.get("message")
        language = request.json.get("language")
        if not user_message:  
            return jsonify({"response": "Please say something!"})  

        bot_response = generate_response(user_message,language)  
        return jsonify({"response": bot_response})  
    except Exception as e:  
        return jsonify({"response": f"An error occurred: {str(e)}"})  

if __name__ == '__main__':  
    app.run(debug=True)
# import os
# import shutil
# from flask import Flask, render_template, request, jsonify
# from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings
# from llama_index.llms.huggingface import HuggingFaceInferenceAPI
# from llama_index.embeddings.huggingface import HuggingFaceEmbedding
# from huggingface_hub import InferenceClient
# from transformers import AutoTokenizer, AutoModelForCausalLM
# from deep_translator import GoogleTranslator
# import torch

# # Ensure HF_TOKEN is set
# HF_TOKEN = os.getenv("HF_TOKEN")
# if not HF_TOKEN:
#     raise ValueError("HF_TOKEN environment variable not set.")

# # Model configuration
# repo_id = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B"

# # Load tokenizer
# tokenizer = AutoTokenizer.from_pretrained(repo_id)

# # Load quantized model
# try:
#     model = AutoModelForCausalLM.from_pretrained(
#         repo_id,
#         device_map="auto",  # Automatically distribute across available devices
#         load_in_8bit=True,  # Quantize to 8-bit precision
#         torch_dtype=torch.float16  # Use 16-bit precision
#     )
# except ImportError:
#     raise ImportError("The 'bitsandbytes' library is required for quantization. Please install it using `pip install bitsandbytes`.")

# # Configure Llama index settings
# Settings.llm = HuggingFaceInferenceAPI(
#     model_name=repo_id,
#     tokenizer_name=repo_id,  # Use the same tokenizer as the model
#     context_window=2048,  # Reduce context window to save memory
#     token=HF_TOKEN,
#     max_new_tokens=256,  # Reduce max tokens to save memory
#     generate_kwargs={"temperature": 0.1},
# )

# # Use a smaller embedding model
# Settings.embed_model = HuggingFaceEmbedding(
#     model_name="sentence-transformers/all-MiniLM-L6-v2"  # Smaller and faster
# )

# # Directories
# PERSIST_DIR = "db"
# PDF_DIRECTORY = 'data'

# # Ensure directories exist
# os.makedirs(PDF_DIRECTORY, exist_ok=True)
# os.makedirs(PERSIST_DIR, exist_ok=True)

# chat_history = []
# current_chat_history = []

# def data_ingestion_from_directory():
#     # Clear previous data by removing the persist directory
#     if os.path.exists(PERSIST_DIR):
#         shutil.rmtree(PERSIST_DIR)  # Remove the persist directory and all its contents
    
#     # Recreate the persist directory after removal
#     os.makedirs(PERSIST_DIR, exist_ok=True)
    
#     # Load new documents from the directory
#     new_documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data()
    
#     # Create a new index with the new documents
#     index = VectorStoreIndex.from_documents(new_documents)
    
#     # Persist the new index
#     index.storage_context.persist(persist_dir=PERSIST_DIR)

# def handle_query(query):
#     chat_text_qa_msgs = [
#         (
#             "user",
#             """
#             You are the Hotel voice chatbot and your name is hotel helper. Your goal is to provide accurate, professional, and helpful answers to user queries based on the hotel's data. Always ensure your responses are clear and concise. Give response within 10-15 words only. You need to give an answer in the same language used by the user.       
#             {context_str}
#             Question:
#             {query_str}
#             """
#         )
#     ]
#     text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
    
#     storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
#     index = load_index_from_storage(storage_context)
#     context_str = ""
#     for past_query, response in reversed(current_chat_history):
#         if past_query.strip():
#             context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n"
#     query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str)
#     print(query)
#     answer = query_engine.query(query)
#     if hasattr(answer, 'response'):
#         response = answer.response
#     elif isinstance(answer, dict) and 'response' in answer:
#         response = answer['response']
#     else:
#         response = "Sorry, I couldn't find an answer."
#     current_chat_history.append((query, response))
#     return response

# app = Flask(__name__)

# # Data ingestion
# data_ingestion_from_directory()

# # Generate Response
# def generate_response(query, language):  
#     try:  
#         # Call the handle_query function to get the response  
#         bot_response = handle_query(query)
        
#         # Map of supported languages
#         supported_languages = {
#             "hindi": "hi",
#             "bengali": "bn",
#             "telugu": "te",
#             "marathi": "mr",
#             "tamil": "ta",
#             "gujarati": "gu",
#             "kannada": "kn",
#             "malayalam": "ml",
#             "punjabi": "pa",
#             "odia": "or",
#             "urdu": "ur",
#             "assamese": "as",
#             "sanskrit": "sa",
#             "arabic": "ar",
#             "australian": "en-AU",
#             "bangla-india": "bn-IN",
#             "chinese": "zh-CN",
#             "dutch": "nl",
#             "french": "fr",
#             "filipino": "tl",
#             "greek": "el",
#             "indonesian": "id",
#             "italian": "it",
#             "japanese": "ja",
#             "korean": "ko",
#             "latin": "la",
#             "nepali": "ne",
#             "portuguese": "pt",
#             "romanian": "ro",
#             "russian": "ru",
#             "spanish": "es",
#             "swedish": "sv",
#             "thai": "th",
#             "ukrainian": "uk",
#             "turkish": "tr"
#         }
        
#         # Initialize the translated text
#         translated_text = bot_response
        
#         # Translate only if the language is supported and not English
#         try:
#             if language in supported_languages:
#                 target_lang = supported_languages[language]
#                 translated_text = GoogleTranslator(source='en', target=target_lang).translate(bot_response)
#                 print(translated_text)
#             else:
#                 print(f"Unsupported language: {language}")
#         except Exception as e:
#             # Handle translation errors
#             print(f"Translation error: {e}")
#             translated_text = "Sorry, I couldn't translate the response."
        
#         # Append to chat history
#         chat_history.append((query, translated_text))
#         return translated_text  
#     except Exception as e:  
#         return f"Error fetching the response: {str(e)}"

# # Route for the homepage  
# @app.route('/')  
# def index():  
#     return render_template('index.html')  

# # Route to handle chatbot messages  
# @app.route('/chat', methods=['POST'])  
# def chat():  
#     try:  
#         user_message = request.json.get("message")
#         language = request.json.get("language")
#         if not user_message:  
#             return jsonify({"response": "Please say something!"})  
#         bot_response = generate_response(user_message, language)  
#         return jsonify({"response": bot_response})  
#     except Exception as e:  
#         return jsonify({"response": f"An error occurred: {str(e)}"})  

# if __name__ == '__main__':  
#     app.run(debug=True)