Spaces:
Running
Running
Update main.py
Browse files
main.py
CHANGED
@@ -7,6 +7,10 @@ from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
|
7 |
from huggingface_hub import InferenceClient
|
8 |
from transformers import AutoTokenizer, AutoModel
|
9 |
from deep_translator import GoogleTranslator
|
|
|
|
|
|
|
|
|
10 |
|
11 |
|
12 |
# Ensure HF_TOKEN is set
|
@@ -31,14 +35,14 @@ llm_client = InferenceClient(
|
|
31 |
# generate_kwargs={"temperature": 0.1},
|
32 |
# )
|
33 |
# Configure Llama index settings with the new model
|
34 |
-
Settings.llm = HuggingFaceInferenceAPI(
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
)
|
42 |
# Settings.embed_model = HuggingFaceEmbedding(
|
43 |
# model_name="BAAI/bge-small-en-v1.5"
|
44 |
# )
|
@@ -46,17 +50,35 @@ Settings.llm = HuggingFaceInferenceAPI(
|
|
46 |
# Settings.embed_model = HuggingFaceEmbedding(
|
47 |
# model_name="xlm-roberta-base" # XLM-RoBERTa model for multilingual support
|
48 |
# )
|
49 |
-
Settings.embed_model = HuggingFaceEmbedding(
|
50 |
-
|
51 |
-
)
|
52 |
|
53 |
# # Configure tokenizer and model if required
|
54 |
# tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-base")
|
55 |
# model = AutoModel.from_pretrained("xlm-roberta-base")
|
56 |
# Configure tokenizer and model if required
|
57 |
tokenizer = AutoTokenizer.from_pretrained(repo_id) # Use the tokenizer from the new model
|
58 |
-
model = AutoModel.from_pretrained(repo_id) # Load the new model
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
PERSIST_DIR = "db"
|
61 |
PDF_DIRECTORY = 'data'
|
62 |
|
|
|
7 |
from huggingface_hub import InferenceClient
|
8 |
from transformers import AutoTokenizer, AutoModel
|
9 |
from deep_translator import GoogleTranslator
|
10 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
11 |
+
import torch
|
12 |
+
from accelerate import infer_auto_device_map
|
13 |
+
|
14 |
|
15 |
|
16 |
# Ensure HF_TOKEN is set
|
|
|
35 |
# generate_kwargs={"temperature": 0.1},
|
36 |
# )
|
37 |
# Configure Llama index settings with the new model
|
38 |
+
# Settings.llm = HuggingFaceInferenceAPI(
|
39 |
+
# model_name=repo_id,
|
40 |
+
# tokenizer_name=repo_id, # Use the same tokenizer as the model
|
41 |
+
# context_window=3000,
|
42 |
+
# token=HF_TOKEN,
|
43 |
+
# max_new_tokens=512,
|
44 |
+
# generate_kwargs={"temperature": 0.1},
|
45 |
+
# )
|
46 |
# Settings.embed_model = HuggingFaceEmbedding(
|
47 |
# model_name="BAAI/bge-small-en-v1.5"
|
48 |
# )
|
|
|
50 |
# Settings.embed_model = HuggingFaceEmbedding(
|
51 |
# model_name="xlm-roberta-base" # XLM-RoBERTa model for multilingual support
|
52 |
# )
|
53 |
+
# Settings.embed_model = HuggingFaceEmbedding(
|
54 |
+
# model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
|
55 |
+
# )
|
56 |
|
57 |
# # Configure tokenizer and model if required
|
58 |
# tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-base")
|
59 |
# model = AutoModel.from_pretrained("xlm-roberta-base")
|
60 |
# Configure tokenizer and model if required
|
61 |
tokenizer = AutoTokenizer.from_pretrained(repo_id) # Use the tokenizer from the new model
|
62 |
+
# model = AutoModel.from_pretrained(repo_id) # Load the new model
|
63 |
+
model = AutoModelForCausalLM.from_pretrained(
|
64 |
+
repo_id,
|
65 |
+
load_in_4bit=True, # Load in 4-bit quantization
|
66 |
+
torch_dtype=torch.float16,
|
67 |
+
device_map="auto",
|
68 |
+
)
|
69 |
+
# Configure Llama index settings
|
70 |
+
Settings.llm = HuggingFaceInferenceAPI(
|
71 |
+
model_name=repo_id,
|
72 |
+
tokenizer_name=repo_id, # Use the same tokenizer as the model
|
73 |
+
context_window=2048, # Reduce context window to save memory
|
74 |
+
token=HF_TOKEN,
|
75 |
+
max_new_tokens=256, # Reduce max tokens to save memory
|
76 |
+
generate_kwargs={"temperature": 0.1},
|
77 |
+
)
|
78 |
+
# Use a smaller embedding model
|
79 |
+
Settings.embed_model = HuggingFaceEmbedding(
|
80 |
+
model_name="sentence-transformers/all-MiniLM-L6-v2" # Smaller and faster
|
81 |
+
)
|
82 |
PERSIST_DIR = "db"
|
83 |
PDF_DIRECTORY = 'data'
|
84 |
|