File size: 5,027 Bytes
51f7071
88c034b
81ab56f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16d15ab
 
 
 
 
81ab56f
16d15ab
 
 
 
 
 
 
 
 
 
 
 
 
 
81ab56f
 
 
 
 
 
 
884f4fa
81ab56f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88c034b
 
 
 
 
 
 
 
 
 
81ab56f
 
 
 
 
 
 
 
 
 
88c034b
 
81ab56f
 
 
88c034b
 
 
81ab56f
88c034b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import os
from flask import Flask, render_template, request, jsonify
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from huggingface_hub import InferenceClient

repo_id = "meta-llama/Meta-Llama-3-8B-Instruct"
llm_client = InferenceClient(
    model=repo_id,
    token=os.getenv("HF_TOKEN"),
)

os.environ["HF_TOKEN"] = os.getenv("HF_TOKEN")
# Configure Llama index settings
Settings.llm = HuggingFaceInferenceAPI(
    model_name="meta-llama/Meta-Llama-3-8B-Instruct",
    tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct",
    context_window=3000,
    token=os.getenv("HF_TOKEN"),
    max_new_tokens=512,
    generate_kwargs={"temperature": 0.1},
)
Settings.embed_model = HuggingFaceEmbedding(
    model_name="BAAI/bge-small-en-v1.5"
)

PERSIST_DIR = "db"
PDF_DIRECTORY = 'data'

# Ensure directories exist
os.makedirs(PDF_DIRECTORY, exist_ok=True)
os.makedirs(PERSIST_DIR, exist_ok=True)
chat_history = []
current_chat_history = []

# def data_ingestion_from_directory():
#     documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data()
#     storage_context = StorageContext.from_defaults()
#     index = VectorStoreIndex.from_documents(documents)
#     index.storage_context.persist(persist_dir=PERSIST_DIR)
def data_ingestion_from_directory():
    # Clear previous data by removing the persist directory
    if os.path.exists(PERSIST_DIR):
        shutil.rmtree(PERSIST_DIR)  # Remove the persist directory and all its contents
    
    # Recreate the persist directory after removal
    os.makedirs(PERSIST_DIR, exist_ok=True)
    
    # Load new documents from the directory
    new_documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data()
    
    # Create a new index with the new documents
    index = VectorStoreIndex.from_documents(new_documents)
    
    # Persist the new index
    index.storage_context.persist(persist_dir=PERSIST_DIR)

def handle_query(query):
    chat_text_qa_msgs = [
        (
            "user",
            """
            You are the Taj Hotel chatbot and your name is Taj Hotel Helper. Your goal is to provide accurate, professional, and helpful answers to user queries based on the given Taj hotel's data. Always ensure your responses are clear and concise. Give response within 10-15 words only. You need to give an answer in the same language used by the user.       
            {context_str}
            Question:
            {query_str}
            """
        )
    ]
    text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
    
    storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
    index = load_index_from_storage(storage_context)
    context_str = ""
    for past_query, response in reversed(current_chat_history):
        if past_query.strip():
            context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n"

    query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str)
    print(query)
    answer = query_engine.query(query)

    if hasattr(answer, 'response'):
        response = answer.response
    elif isinstance(answer, dict) and 'response' in answer:
        response = answer['response']
    else:
        response = "Sorry, I couldn't find an answer."
    current_chat_history.append((query, response))
    return response

app = Flask(__name__)

# Initialize Gradio Client once for efficiency
try:
    client = Client("Gopikanth123/llama2")  # Replace with your Gradio model URL
except Exception as e:
    print(f"Error initializing Gradio client: {str(e)}")
    client = None

# # Function to fetch the response from Gradio model
# def generate_response(query):
#     if client is None:
#         return "Model is unavailable at the moment. Please try again later."
#     try:
#         result = client.predict(query=query, api_name="/predict")
#         return result
#     except Exception as e:
#         return f"Error fetching the response: {str(e)}"
# Generate Response
def generate_response(query):
    try:
        # Call the handle_query function to get the response
        bot_response = handle_query(query)
        return bot_response
    except Exception as e:
        return f"Error fetching the response: {str(e)}"


# Route for the homepage
@app.route('/')
def index():
    return render_template('index.html')

# Route to handle chatbot messages
@app.route('/chat', methods=['POST'])
def chat():
    try:
        user_message = request.json.get("message")
        if not user_message:
            return jsonify({"response": "Please say something!"})

        bot_response = generate_response(user_message)
        return jsonify({"response": bot_response})
    except Exception as e:
        return jsonify({"response": f"An error occurred: {str(e)}"})

if __name__ == '__main__':
    app.run(debug=True)