Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import gradio as gr | |
from PIL import Image | |
from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline | |
from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref | |
from src.unet_hacked_tryon import UNet2DConditionModel | |
from transformers import ( | |
CLIPImageProcessor, | |
CLIPVisionModelWithProjection, | |
CLIPTextModel, | |
CLIPTextModelWithProjection, | |
) | |
from diffusers import DDPMScheduler, AutoencoderKL | |
from typing import List | |
import torch | |
import os | |
from transformers import AutoTokenizer | |
import numpy as np | |
from utils_mask import get_mask_location | |
from torchvision import transforms | |
import apply_net | |
from preprocess.humanparsing.run_parsing import Parsing | |
from preprocess.openpose.run_openpose import OpenPose | |
from detectron2.data.detection_utils import convert_PIL_to_numpy, _apply_exif_orientation | |
from torchvision.transforms.functional import to_pil_image | |
def pil_to_binary_mask(pil_image, threshold=0): | |
np_image = np.array(pil_image) | |
grayscale_image = Image.fromarray(np_image).convert("L") | |
binary_mask = np.array(grayscale_image) > threshold | |
mask = np.zeros(binary_mask.shape, dtype=np.uint8) | |
for i in range(binary_mask.shape[0]): | |
for j in range(binary_mask.shape[1]): | |
if binary_mask[i, j]: | |
mask[i, j] = 1 | |
return Image.fromarray((mask * 255).astype(np.uint8)) | |
def add_watermark(main_image, logo_path='logo.png', position='bottom-left', size_percentage=10): | |
logo = Image.open(logo_path).convert('RGBA') | |
main_width, main_height = main_image.size | |
logo_width = int(main_width * size_percentage / 100) | |
logo_height = int(logo.size[1] * (logo_width / logo.size[0])) | |
logo = logo.resize((logo_width, logo_height), Image.Resampling.LANCZOS) | |
if main_image.mode != 'RGBA': | |
main_image = main_image.convert('RGBA') | |
watermarked = Image.new('RGBA', main_image.size, (0, 0, 0, 0)) | |
watermarked.paste(main_image, (0, 0)) | |
if position == 'bottom-left': | |
pos = (10, main_height - logo_height - 10) | |
elif position == 'bottom-right': | |
pos = (main_width - logo_width - 10, main_height - logo_height - 10) | |
elif position == 'top-right': | |
pos = (main_width - logo_width - 10, 10) | |
elif position == 'top-left': | |
pos = (10, 10) | |
watermarked.paste(logo, pos, logo) | |
return watermarked.convert('RGB') | |
base_path = 'yisol/IDM-VTON' | |
example_path = os.path.join(os.path.dirname(__file__), 'example') | |
unet = UNet2DConditionModel.from_pretrained(base_path, subfolder="unet", torch_dtype=torch.float16) | |
tokenizer_one = AutoTokenizer.from_pretrained(base_path, subfolder="tokenizer", use_fast=False) | |
tokenizer_two = AutoTokenizer.from_pretrained(base_path, subfolder="tokenizer_2", use_fast=False) | |
noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler") | |
text_encoder_one = CLIPTextModel.from_pretrained(base_path, subfolder="text_encoder", torch_dtype=torch.float16) | |
text_encoder_two = CLIPTextModelWithProjection.from_pretrained(base_path, subfolder="text_encoder_2", torch_dtype=torch.float16) | |
image_encoder = CLIPVisionModelWithProjection.from_pretrained(base_path, subfolder="image_encoder", torch_dtype=torch.float16) | |
vae = AutoencoderKL.from_pretrained(base_path, subfolder="vae", torch_dtype=torch.float16) | |
UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(base_path, subfolder="unet_encoder", torch_dtype=torch.float16) | |
parsing_model = Parsing(0) | |
openpose_model = OpenPose(0) | |
for model in [unet, text_encoder_one, text_encoder_two, image_encoder, vae, UNet_Encoder]: | |
model.requires_grad_(False) | |
tensor_transfrom = transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Normalize([0.5], [0.5]), | |
]) | |
pipe = TryonPipeline.from_pretrained( | |
base_path, | |
unet=unet, | |
vae=vae, | |
feature_extractor=CLIPImageProcessor(), | |
text_encoder=text_encoder_one, | |
text_encoder_2=text_encoder_two, | |
tokenizer=tokenizer_one, | |
tokenizer_2=tokenizer_two, | |
scheduler=noise_scheduler, | |
image_encoder=image_encoder, | |
torch_dtype=torch.float16, | |
) | |
pipe.unet_encoder = UNet_Encoder | |
def start_tryon(dict, garm_img, garment_des, is_checked, is_checked_crop, denoise_steps, seed): | |
device = "cuda" | |
openpose_model.preprocessor.body_estimation.model.to(device) | |
pipe.to(device) | |
pipe.unet_encoder.to(device) | |
garm_img = garm_img.convert("RGB").resize((768, 1024)) | |
human_img_orig = dict["background"].convert("RGB") | |
if is_checked_crop: | |
width, height = human_img_orig.size | |
target_width = int(min(width, height * (3 / 4))) | |
target_height = int(min(height, width * (4 / 3))) | |
left = (width - target_width) // 2 | |
top = (height - target_height) // 2 | |
cropped_img = human_img_orig.crop((left, top, left + target_width, top + target_height)) | |
crop_size = cropped_img.size | |
human_img = cropped_img.resize((768, 1024)) | |
else: | |
human_img = human_img_orig.resize((768, 1024)) | |
if is_checked: | |
keypoints = openpose_model(human_img.resize((384, 512))) | |
model_parse, _ = parsing_model(human_img.resize((384, 512))) | |
mask, _ = get_mask_location('hd', "upper_body", model_parse, keypoints) | |
mask = mask.resize((768, 1024)) | |
else: | |
mask = pil_to_binary_mask(dict['layers'][0].convert("RGB").resize((768, 1024))) | |
mask_gray = (1 - transforms.ToTensor()(mask)) * tensor_transfrom(human_img) | |
mask_gray = to_pil_image((mask_gray + 1.0) / 2.0) | |
human_img_arg = _apply_exif_orientation(human_img.resize((384, 512))) | |
human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR") | |
args = apply_net.create_argument_parser().parse_args(( | |
'show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', | |
'./ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v', | |
'--opts', 'MODEL.DEVICE', 'cuda')) | |
pose_img = args.func(args, human_img_arg) | |
pose_img = Image.fromarray(pose_img[:, :, ::-1]).resize((768, 1024)) | |
with torch.no_grad(): | |
with torch.cuda.amp.autocast(): | |
if not garment_des or not isinstance(garment_des, str): | |
garment_des = "a garment" | |
prompt = "model is wearing " + garment_des | |
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality" | |
if not garment_des or not isinstance(garment_des, str): | |
garment_des = "a garment" | |
prompt_embeds, neg_embeds, pooled_prompt_embeds, neg_pooled_prompt_embeds = pipe.encode_prompt([prompt], 1, True, [negative_prompt]) | |
prompt_c = "a photo of " + garment_des | |
prompt_embeds_c, _, _, _ = pipe.encode_prompt( | |
[prompt_c], 1, False, [negative_prompt]) | |
pose_tensor = tensor_transfrom(pose_img).unsqueeze(0).to(device) | |
garm_tensor = tensor_transfrom(garm_img).unsqueeze(0).to(device) | |
generator = torch.Generator(device).manual_seed(seed) if seed is not None else None | |
output = pipe( | |
prompt_embeds=prompt_embeds.to(device), | |
negative_prompt_embeds=neg_embeds.to(device), | |
pooled_prompt_embeds=pooled_prompt_embeds.to(device), | |
negative_pooled_prompt_embeds=neg_pooled_prompt_embeds.to(device), | |
num_inference_steps=denoise_steps, | |
generator=generator, | |
strength=1.0, | |
pose_img=pose_tensor, | |
text_embeds_cloth=prompt_embeds_c.to(device), | |
cloth=garm_tensor, | |
mask_image=mask, | |
image=human_img, | |
height=1024, | |
width=768, | |
ip_adapter_image=garm_img, | |
guidance_scale=2.0, | |
)[0] | |
result_img = output[0].resize(crop_size) if is_checked_crop else output[0] | |
if is_checked_crop: | |
human_img_orig.paste(result_img, (left, top)) | |
result_img = human_img_orig | |
return add_watermark(result_img), None | |
# --- Gradio UI setup --- | |
garm_list = os.listdir(os.path.join(example_path, "cloth")) | |
garm_list_path = [os.path.join(example_path, "cloth", g) for g in garm_list] | |
human_list = os.listdir(os.path.join(example_path, "human")) | |
human_list_path = [os.path.join(example_path, "human", h) for h in human_list] | |
human_ex_list = [{'background': h, 'layers': None, 'composite': None} for h in human_list_path] | |
image_blocks = gr.Blocks().queue() | |
with image_blocks as demo: | |
gr.Markdown( | |
""" | |
<div style="text-align: center; background: linear-gradient(135deg, #2541b2 0%, #1a237e 100%); padding: 2.5rem; color: white; border-radius: 0 0 20px 20px; margin-bottom: 2rem; box-shadow: 0 4px 6px rgba(0,0,0,0.1);"> | |
<h1 style="color: white; font-size: 2.5rem; font-weight: 600; margin-bottom: 1rem;">Deradh Virtual Try-On Experience</h1> | |
<div style="margin: 1rem 0;"> | |
<a href="https://deradh.com" style="color: white; text-decoration: none; padding: 0.5rem 1rem; border: 2px solid white; border-radius: 25px; transition: all 0.3s ease;"> | |
Visit Deradh.com | |
</a> | |
</div> | |
</div> | |
<div style="text-align: center; padding: 1rem; color: #6ed7fe; font-size: 1.2rem; font-weight: 500; margin-bottom: 2rem;"> | |
Experience the future of fashion with our AI-powered virtual try-on technology. Every user gets 2-3 free trials per day. | |
</div> | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
imgs = gr.ImageEditor(sources='upload', type="pil", label='Human. Mask with pen or use auto-masking', interactive=True) | |
is_checked = gr.Checkbox(label="Use auto mask", value=True) | |
is_checked_crop = gr.Checkbox(label="Auto-crop image", value=False) | |
gr.Examples(inputs=imgs, examples_per_page=10, examples=human_ex_list) | |
with gr.Column(): | |
garm_img = gr.Image(label="Garment", sources='upload', type="pil") | |
prompt = gr.Textbox(placeholder="Garment description e.g., Blue Hoodie", show_label=False) | |
gr.Examples(inputs=garm_img, examples_per_page=8, examples=garm_list_path) | |
with gr.Column(): | |
image_out = gr.Image(label="Try-On Output", elem_id="output-img", show_share_button=False) | |
try_button = gr.Button(value="Try-on") | |
with gr.Accordion(label="Advanced Settings", open=False): | |
denoise_steps = gr.Number(label="Denoising Steps", minimum=20, maximum=40, value=30, step=1) | |
seed = gr.Number(label="Seed", minimum=-1, maximum=2147483647, step=1, value=42) | |
try_button.click( | |
fn=start_tryon, | |
inputs=[imgs, garm_img, prompt, is_checked, is_checked_crop, denoise_steps, seed], | |
outputs=[image_out, gr.Image(visible=False)], | |
api_name='tryon' | |
) | |
image_blocks.launch() | |