TryOn-Deradh / app.py
Gopalag's picture
Update app.py
c43f57d verified
raw
history blame
10.9 kB
import spaces
import gradio as gr
from PIL import Image
from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline
from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref
from src.unet_hacked_tryon import UNet2DConditionModel
from transformers import (
CLIPImageProcessor,
CLIPVisionModelWithProjection,
CLIPTextModel,
CLIPTextModelWithProjection,
)
from diffusers import DDPMScheduler, AutoencoderKL
from typing import List
import torch
import os
from transformers import AutoTokenizer
import numpy as np
from utils_mask import get_mask_location
from torchvision import transforms
import apply_net
from preprocess.humanparsing.run_parsing import Parsing
from preprocess.openpose.run_openpose import OpenPose
from detectron2.data.detection_utils import convert_PIL_to_numpy, _apply_exif_orientation
from torchvision.transforms.functional import to_pil_image
def pil_to_binary_mask(pil_image, threshold=0):
np_image = np.array(pil_image)
grayscale_image = Image.fromarray(np_image).convert("L")
binary_mask = np.array(grayscale_image) > threshold
mask = np.zeros(binary_mask.shape, dtype=np.uint8)
for i in range(binary_mask.shape[0]):
for j in range(binary_mask.shape[1]):
if binary_mask[i, j]:
mask[i, j] = 1
return Image.fromarray((mask * 255).astype(np.uint8))
def add_watermark(main_image, logo_path='logo.png', position='bottom-left', size_percentage=10):
logo = Image.open(logo_path).convert('RGBA')
main_width, main_height = main_image.size
logo_width = int(main_width * size_percentage / 100)
logo_height = int(logo.size[1] * (logo_width / logo.size[0]))
logo = logo.resize((logo_width, logo_height), Image.Resampling.LANCZOS)
if main_image.mode != 'RGBA':
main_image = main_image.convert('RGBA')
watermarked = Image.new('RGBA', main_image.size, (0, 0, 0, 0))
watermarked.paste(main_image, (0, 0))
if position == 'bottom-left':
pos = (10, main_height - logo_height - 10)
elif position == 'bottom-right':
pos = (main_width - logo_width - 10, main_height - logo_height - 10)
elif position == 'top-right':
pos = (main_width - logo_width - 10, 10)
elif position == 'top-left':
pos = (10, 10)
watermarked.paste(logo, pos, logo)
return watermarked.convert('RGB')
base_path = 'yisol/IDM-VTON'
example_path = os.path.join(os.path.dirname(__file__), 'example')
unet = UNet2DConditionModel.from_pretrained(base_path, subfolder="unet", torch_dtype=torch.float16)
tokenizer_one = AutoTokenizer.from_pretrained(base_path, subfolder="tokenizer", use_fast=False)
tokenizer_two = AutoTokenizer.from_pretrained(base_path, subfolder="tokenizer_2", use_fast=False)
noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler")
text_encoder_one = CLIPTextModel.from_pretrained(base_path, subfolder="text_encoder", torch_dtype=torch.float16)
text_encoder_two = CLIPTextModelWithProjection.from_pretrained(base_path, subfolder="text_encoder_2", torch_dtype=torch.float16)
image_encoder = CLIPVisionModelWithProjection.from_pretrained(base_path, subfolder="image_encoder", torch_dtype=torch.float16)
vae = AutoencoderKL.from_pretrained(base_path, subfolder="vae", torch_dtype=torch.float16)
UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(base_path, subfolder="unet_encoder", torch_dtype=torch.float16)
parsing_model = Parsing(0)
openpose_model = OpenPose(0)
for model in [unet, text_encoder_one, text_encoder_two, image_encoder, vae, UNet_Encoder]:
model.requires_grad_(False)
tensor_transfrom = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
])
pipe = TryonPipeline.from_pretrained(
base_path,
unet=unet,
vae=vae,
feature_extractor=CLIPImageProcessor(),
text_encoder=text_encoder_one,
text_encoder_2=text_encoder_two,
tokenizer=tokenizer_one,
tokenizer_2=tokenizer_two,
scheduler=noise_scheduler,
image_encoder=image_encoder,
torch_dtype=torch.float16,
)
pipe.unet_encoder = UNet_Encoder
@spaces.GPU
def start_tryon(dict, garm_img, garment_des, is_checked, is_checked_crop, denoise_steps, seed):
device = "cuda"
openpose_model.preprocessor.body_estimation.model.to(device)
pipe.to(device)
pipe.unet_encoder.to(device)
garm_img = garm_img.convert("RGB").resize((768, 1024))
human_img_orig = dict["background"].convert("RGB")
if is_checked_crop:
width, height = human_img_orig.size
target_width = int(min(width, height * (3 / 4)))
target_height = int(min(height, width * (4 / 3)))
left = (width - target_width) // 2
top = (height - target_height) // 2
cropped_img = human_img_orig.crop((left, top, left + target_width, top + target_height))
crop_size = cropped_img.size
human_img = cropped_img.resize((768, 1024))
else:
human_img = human_img_orig.resize((768, 1024))
if is_checked:
keypoints = openpose_model(human_img.resize((384, 512)))
model_parse, _ = parsing_model(human_img.resize((384, 512)))
mask, _ = get_mask_location('hd', "upper_body", model_parse, keypoints)
mask = mask.resize((768, 1024))
else:
mask = pil_to_binary_mask(dict['layers'][0].convert("RGB").resize((768, 1024)))
mask_gray = (1 - transforms.ToTensor()(mask)) * tensor_transfrom(human_img)
mask_gray = to_pil_image((mask_gray + 1.0) / 2.0)
human_img_arg = _apply_exif_orientation(human_img.resize((384, 512)))
human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR")
args = apply_net.create_argument_parser().parse_args((
'show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml',
'./ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v',
'--opts', 'MODEL.DEVICE', 'cuda'))
pose_img = args.func(args, human_img_arg)
pose_img = Image.fromarray(pose_img[:, :, ::-1]).resize((768, 1024))
with torch.no_grad():
with torch.cuda.amp.autocast():
if not garment_des or not isinstance(garment_des, str):
garment_des = "a garment"
prompt = "model is wearing " + garment_des
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
if not garment_des or not isinstance(garment_des, str):
garment_des = "a garment"
prompt_embeds, neg_embeds, pooled_prompt_embeds, neg_pooled_prompt_embeds = pipe.encode_prompt([prompt], 1, True, [negative_prompt])
prompt_c = "a photo of " + garment_des
prompt_embeds_c, _, _, _ = pipe.encode_prompt(
[prompt_c], 1, False, [negative_prompt])
pose_tensor = tensor_transfrom(pose_img).unsqueeze(0).to(device)
garm_tensor = tensor_transfrom(garm_img).unsqueeze(0).to(device)
generator = torch.Generator(device).manual_seed(seed) if seed is not None else None
output = pipe(
prompt_embeds=prompt_embeds.to(device),
negative_prompt_embeds=neg_embeds.to(device),
pooled_prompt_embeds=pooled_prompt_embeds.to(device),
negative_pooled_prompt_embeds=neg_pooled_prompt_embeds.to(device),
num_inference_steps=denoise_steps,
generator=generator,
strength=1.0,
pose_img=pose_tensor,
text_embeds_cloth=prompt_embeds_c.to(device),
cloth=garm_tensor,
mask_image=mask,
image=human_img,
height=1024,
width=768,
ip_adapter_image=garm_img,
guidance_scale=2.0,
)[0]
result_img = output[0].resize(crop_size) if is_checked_crop else output[0]
if is_checked_crop:
human_img_orig.paste(result_img, (left, top))
result_img = human_img_orig
return add_watermark(result_img), None
# --- Gradio UI setup ---
garm_list = os.listdir(os.path.join(example_path, "cloth"))
garm_list_path = [os.path.join(example_path, "cloth", g) for g in garm_list]
human_list = os.listdir(os.path.join(example_path, "human"))
human_list_path = [os.path.join(example_path, "human", h) for h in human_list]
human_ex_list = [{'background': h, 'layers': None, 'composite': None} for h in human_list_path]
image_blocks = gr.Blocks().queue()
with image_blocks as demo:
gr.Markdown(
"""
<div style="text-align: center; background: linear-gradient(135deg, #2541b2 0%, #1a237e 100%); padding: 2.5rem; color: white; border-radius: 0 0 20px 20px; margin-bottom: 2rem; box-shadow: 0 4px 6px rgba(0,0,0,0.1);">
<h1 style="color: white; font-size: 2.5rem; font-weight: 600; margin-bottom: 1rem;">Deradh Virtual Try-On Experience</h1>
<div style="margin: 1rem 0;">
<a href="https://deradh.com" style="color: white; text-decoration: none; padding: 0.5rem 1rem; border: 2px solid white; border-radius: 25px; transition: all 0.3s ease;">
Visit Deradh.com
</a>
</div>
</div>
<div style="text-align: center; padding: 1rem; color: #6ed7fe; font-size: 1.2rem; font-weight: 500; margin-bottom: 2rem;">
Experience the future of fashion with our AI-powered virtual try-on technology. Every user gets 2-3 free trials per day.
</div>
""")
with gr.Row():
with gr.Column():
imgs = gr.ImageEditor(sources='upload', type="pil", label='Human. Mask with pen or use auto-masking', interactive=True)
is_checked = gr.Checkbox(label="Use auto mask", value=True)
is_checked_crop = gr.Checkbox(label="Auto-crop image", value=False)
gr.Examples(inputs=imgs, examples_per_page=10, examples=human_ex_list)
with gr.Column():
garm_img = gr.Image(label="Garment", sources='upload', type="pil")
prompt = gr.Textbox(placeholder="Garment description e.g., Blue Hoodie", show_label=False)
gr.Examples(inputs=garm_img, examples_per_page=8, examples=garm_list_path)
with gr.Column():
image_out = gr.Image(label="Try-On Output", elem_id="output-img", show_share_button=False)
try_button = gr.Button(value="Try-on")
with gr.Accordion(label="Advanced Settings", open=False):
denoise_steps = gr.Number(label="Denoising Steps", minimum=20, maximum=40, value=30, step=1)
seed = gr.Number(label="Seed", minimum=-1, maximum=2147483647, step=1, value=42)
try_button.click(
fn=start_tryon,
inputs=[imgs, garm_img, prompt, is_checked, is_checked_crop, denoise_steps, seed],
outputs=[image_out, gr.Image(visible=False)],
api_name='tryon'
)
image_blocks.launch()