Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,891 Bytes
02267af 938e515 8574cda 938e515 8574cda 1a13129 938e515 8574cda 938e515 8574cda 938e515 8574cda 938e515 8574cda 938e515 8574cda 938e515 8574cda 938e515 8574cda ab2e314 8574cda ab2e314 8574cda ab2e314 8574cda ab2e314 938e515 8574cda 938e515 8574cda 938e515 8574cda 938e515 8574cda 938e515 c43f57d 8574cda c43f57d 8574cda ab2e314 8574cda 938e515 8574cda 938e515 8574cda 164e9d5 938e515 8574cda 938e515 c123434 8574cda 938e515 8574cda 938e515 8574cda 938e515 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
import spaces
import gradio as gr
from PIL import Image
from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline
from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref
from src.unet_hacked_tryon import UNet2DConditionModel
from transformers import (
CLIPImageProcessor,
CLIPVisionModelWithProjection,
CLIPTextModel,
CLIPTextModelWithProjection,
)
from diffusers import DDPMScheduler, AutoencoderKL
from typing import List
import torch
import os
from transformers import AutoTokenizer
import numpy as np
from utils_mask import get_mask_location
from torchvision import transforms
import apply_net
from preprocess.humanparsing.run_parsing import Parsing
from preprocess.openpose.run_openpose import OpenPose
from detectron2.data.detection_utils import convert_PIL_to_numpy, _apply_exif_orientation
from torchvision.transforms.functional import to_pil_image
def pil_to_binary_mask(pil_image, threshold=0):
np_image = np.array(pil_image)
grayscale_image = Image.fromarray(np_image).convert("L")
binary_mask = np.array(grayscale_image) > threshold
mask = np.zeros(binary_mask.shape, dtype=np.uint8)
for i in range(binary_mask.shape[0]):
for j in range(binary_mask.shape[1]):
if binary_mask[i, j]:
mask[i, j] = 1
return Image.fromarray((mask * 255).astype(np.uint8))
def add_watermark(main_image, logo_path='logo.png', position='bottom-left', size_percentage=10):
logo = Image.open(logo_path).convert('RGBA')
main_width, main_height = main_image.size
logo_width = int(main_width * size_percentage / 100)
logo_height = int(logo.size[1] * (logo_width / logo.size[0]))
logo = logo.resize((logo_width, logo_height), Image.Resampling.LANCZOS)
if main_image.mode != 'RGBA':
main_image = main_image.convert('RGBA')
watermarked = Image.new('RGBA', main_image.size, (0, 0, 0, 0))
watermarked.paste(main_image, (0, 0))
if position == 'bottom-left':
pos = (10, main_height - logo_height - 10)
elif position == 'bottom-right':
pos = (main_width - logo_width - 10, main_height - logo_height - 10)
elif position == 'top-right':
pos = (main_width - logo_width - 10, 10)
elif position == 'top-left':
pos = (10, 10)
watermarked.paste(logo, pos, logo)
return watermarked.convert('RGB')
base_path = 'yisol/IDM-VTON'
example_path = os.path.join(os.path.dirname(__file__), 'example')
unet = UNet2DConditionModel.from_pretrained(base_path, subfolder="unet", torch_dtype=torch.float16)
tokenizer_one = AutoTokenizer.from_pretrained(base_path, subfolder="tokenizer", use_fast=False)
tokenizer_two = AutoTokenizer.from_pretrained(base_path, subfolder="tokenizer_2", use_fast=False)
noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler")
text_encoder_one = CLIPTextModel.from_pretrained(base_path, subfolder="text_encoder", torch_dtype=torch.float16)
text_encoder_two = CLIPTextModelWithProjection.from_pretrained(base_path, subfolder="text_encoder_2", torch_dtype=torch.float16)
image_encoder = CLIPVisionModelWithProjection.from_pretrained(base_path, subfolder="image_encoder", torch_dtype=torch.float16)
vae = AutoencoderKL.from_pretrained(base_path, subfolder="vae", torch_dtype=torch.float16)
UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(base_path, subfolder="unet_encoder", torch_dtype=torch.float16)
parsing_model = Parsing(0)
openpose_model = OpenPose(0)
for model in [unet, text_encoder_one, text_encoder_two, image_encoder, vae, UNet_Encoder]:
model.requires_grad_(False)
tensor_transfrom = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
])
pipe = TryonPipeline.from_pretrained(
base_path,
unet=unet,
vae=vae,
feature_extractor=CLIPImageProcessor(),
text_encoder=text_encoder_one,
text_encoder_2=text_encoder_two,
tokenizer=tokenizer_one,
tokenizer_2=tokenizer_two,
scheduler=noise_scheduler,
image_encoder=image_encoder,
torch_dtype=torch.float16,
)
pipe.unet_encoder = UNet_Encoder
@spaces.GPU
def start_tryon(dict, garm_img, garment_des, is_checked, is_checked_crop, denoise_steps, seed):
device = "cuda"
openpose_model.preprocessor.body_estimation.model.to(device)
pipe.to(device)
pipe.unet_encoder.to(device)
garm_img = garm_img.convert("RGB").resize((768, 1024))
human_img_orig = dict["background"].convert("RGB")
if is_checked_crop:
width, height = human_img_orig.size
target_width = int(min(width, height * (3 / 4)))
target_height = int(min(height, width * (4 / 3)))
left = (width - target_width) // 2
top = (height - target_height) // 2
cropped_img = human_img_orig.crop((left, top, left + target_width, top + target_height))
crop_size = cropped_img.size
human_img = cropped_img.resize((768, 1024))
else:
human_img = human_img_orig.resize((768, 1024))
if is_checked:
keypoints = openpose_model(human_img.resize((384, 512)))
model_parse, _ = parsing_model(human_img.resize((384, 512)))
mask, _ = get_mask_location('hd', "upper_body", model_parse, keypoints)
mask = mask.resize((768, 1024))
else:
mask = pil_to_binary_mask(dict['layers'][0].convert("RGB").resize((768, 1024)))
mask_gray = (1 - transforms.ToTensor()(mask)) * tensor_transfrom(human_img)
mask_gray = to_pil_image((mask_gray + 1.0) / 2.0)
human_img_arg = _apply_exif_orientation(human_img.resize((384, 512)))
human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR")
args = apply_net.create_argument_parser().parse_args((
'show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml',
'./ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v',
'--opts', 'MODEL.DEVICE', 'cuda'))
pose_img = args.func(args, human_img_arg)
pose_img = Image.fromarray(pose_img[:, :, ::-1]).resize((768, 1024))
with torch.no_grad():
with torch.cuda.amp.autocast():
if not garment_des or not isinstance(garment_des, str):
garment_des = "a garment"
prompt = "model is wearing " + garment_des
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
if not garment_des or not isinstance(garment_des, str):
garment_des = "a garment"
prompt_embeds, neg_embeds, pooled_prompt_embeds, neg_pooled_prompt_embeds = pipe.encode_prompt([prompt], 1, True, [negative_prompt])
prompt_c = "a photo of " + garment_des
prompt_embeds_c, _, _, _ = pipe.encode_prompt(
[prompt_c], 1, False, [negative_prompt])
pose_tensor = tensor_transfrom(pose_img).unsqueeze(0).to(device)
garm_tensor = tensor_transfrom(garm_img).unsqueeze(0).to(device)
generator = torch.Generator(device).manual_seed(seed) if seed is not None else None
output = pipe(
prompt_embeds=prompt_embeds.to(device),
negative_prompt_embeds=neg_embeds.to(device),
pooled_prompt_embeds=pooled_prompt_embeds.to(device),
negative_pooled_prompt_embeds=neg_pooled_prompt_embeds.to(device),
num_inference_steps=denoise_steps,
generator=generator,
strength=1.0,
pose_img=pose_tensor,
text_embeds_cloth=prompt_embeds_c.to(device),
cloth=garm_tensor,
mask_image=mask,
image=human_img,
height=1024,
width=768,
ip_adapter_image=garm_img,
guidance_scale=2.0,
)[0]
result_img = output[0].resize(crop_size) if is_checked_crop else output[0]
if is_checked_crop:
human_img_orig.paste(result_img, (left, top))
result_img = human_img_orig
return add_watermark(result_img), None
# --- Gradio UI setup ---
garm_list = os.listdir(os.path.join(example_path, "cloth"))
garm_list_path = [os.path.join(example_path, "cloth", g) for g in garm_list]
human_list = os.listdir(os.path.join(example_path, "human"))
human_list_path = [os.path.join(example_path, "human", h) for h in human_list]
human_ex_list = [{'background': h, 'layers': None, 'composite': None} for h in human_list_path]
image_blocks = gr.Blocks().queue()
with image_blocks as demo:
gr.Markdown(
"""
<div style="text-align: center; background: linear-gradient(135deg, #2541b2 0%, #1a237e 100%); padding: 2.5rem; color: white; border-radius: 0 0 20px 20px; margin-bottom: 2rem; box-shadow: 0 4px 6px rgba(0,0,0,0.1);">
<h1 style="color: white; font-size: 2.5rem; font-weight: 600; margin-bottom: 1rem;">Deradh Virtual Try-On Experience</h1>
<div style="margin: 1rem 0;">
<a href="https://deradh.com" style="color: white; text-decoration: none; padding: 0.5rem 1rem; border: 2px solid white; border-radius: 25px; transition: all 0.3s ease;">
Visit Deradh.com
</a>
</div>
</div>
<div style="text-align: center; padding: 1rem; color: #6ed7fe; font-size: 1.2rem; font-weight: 500; margin-bottom: 2rem;">
Experience the future of fashion with our AI-powered virtual try-on technology. Every user gets 2-3 free trials per day.
</div>
""")
with gr.Row():
with gr.Column():
imgs = gr.ImageEditor(sources='upload', type="pil", label='Human. Mask with pen or use auto-masking', interactive=True)
is_checked = gr.Checkbox(label="Use auto mask", value=True)
is_checked_crop = gr.Checkbox(label="Auto-crop image", value=False)
gr.Examples(inputs=imgs, examples_per_page=10, examples=human_ex_list)
with gr.Column():
garm_img = gr.Image(label="Garment", sources='upload', type="pil")
prompt = gr.Textbox(placeholder="Garment description e.g., Blue Hoodie", show_label=False)
gr.Examples(inputs=garm_img, examples_per_page=8, examples=garm_list_path)
with gr.Column():
image_out = gr.Image(label="Try-On Output", elem_id="output-img", show_share_button=False)
try_button = gr.Button(value="Try-on")
with gr.Accordion(label="Advanced Settings", open=False):
denoise_steps = gr.Number(label="Denoising Steps", minimum=20, maximum=40, value=30, step=1)
seed = gr.Number(label="Seed", minimum=-1, maximum=2147483647, step=1, value=42)
try_button.click(
fn=start_tryon,
inputs=[imgs, garm_img, prompt, is_checked, is_checked_crop, denoise_steps, seed],
outputs=[image_out, gr.Image(visible=False)],
api_name='tryon'
)
image_blocks.launch()
|