File size: 10,891 Bytes
02267af
938e515
 
 
 
 
 
 
 
 
 
 
8574cda
938e515
 
 
 
 
 
 
 
 
 
8574cda
1a13129
938e515
 
 
 
 
 
 
 
 
8574cda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
938e515
 
 
 
 
8574cda
 
 
938e515
8574cda
 
 
 
 
938e515
 
 
 
8574cda
 
 
 
 
 
 
938e515
 
8574cda
 
 
 
 
 
 
 
 
 
 
938e515
 
 
 
8574cda
938e515
 
 
 
 
8574cda
 
 
ab2e314
 
 
 
8574cda
 
 
ab2e314
8574cda
ab2e314
8574cda
ab2e314
938e515
8574cda
 
 
 
938e515
 
 
8574cda
 
938e515
8574cda
938e515
8574cda
 
 
 
 
 
 
938e515
 
c43f57d
 
 
8574cda
 
c43f57d
 
 
 
 
8574cda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab2e314
8574cda
 
938e515
8574cda
938e515
8574cda
 
 
 
 
 
164e9d5
938e515
 
8574cda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
938e515
 
c123434
8574cda
 
 
938e515
 
 
8574cda
 
938e515
8574cda
 
 
 
 
 
 
 
 
 
 
 
 
 
938e515
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import spaces
import gradio as gr
from PIL import Image
from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline
from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref
from src.unet_hacked_tryon import UNet2DConditionModel
from transformers import (
    CLIPImageProcessor,
    CLIPVisionModelWithProjection,
    CLIPTextModel,
    CLIPTextModelWithProjection,
)
from diffusers import DDPMScheduler, AutoencoderKL
from typing import List
import torch
import os
from transformers import AutoTokenizer
import numpy as np
from utils_mask import get_mask_location
from torchvision import transforms
import apply_net
from preprocess.humanparsing.run_parsing import Parsing
from preprocess.openpose.run_openpose import OpenPose
from detectron2.data.detection_utils import convert_PIL_to_numpy, _apply_exif_orientation
from torchvision.transforms.functional import to_pil_image


def pil_to_binary_mask(pil_image, threshold=0):
    np_image = np.array(pil_image)
    grayscale_image = Image.fromarray(np_image).convert("L")
    binary_mask = np.array(grayscale_image) > threshold
    mask = np.zeros(binary_mask.shape, dtype=np.uint8)
    for i in range(binary_mask.shape[0]):
        for j in range(binary_mask.shape[1]):
            if binary_mask[i, j]:
                mask[i, j] = 1
    return Image.fromarray((mask * 255).astype(np.uint8))


def add_watermark(main_image, logo_path='logo.png', position='bottom-left', size_percentage=10):
    logo = Image.open(logo_path).convert('RGBA')
    main_width, main_height = main_image.size
    logo_width = int(main_width * size_percentage / 100)
    logo_height = int(logo.size[1] * (logo_width / logo.size[0]))
    logo = logo.resize((logo_width, logo_height), Image.Resampling.LANCZOS)

    if main_image.mode != 'RGBA':
        main_image = main_image.convert('RGBA')

    watermarked = Image.new('RGBA', main_image.size, (0, 0, 0, 0))
    watermarked.paste(main_image, (0, 0))

    if position == 'bottom-left':
        pos = (10, main_height - logo_height - 10)
    elif position == 'bottom-right':
        pos = (main_width - logo_width - 10, main_height - logo_height - 10)
    elif position == 'top-right':
        pos = (main_width - logo_width - 10, 10)
    elif position == 'top-left':
        pos = (10, 10)

    watermarked.paste(logo, pos, logo)
    return watermarked.convert('RGB')


base_path = 'yisol/IDM-VTON'
example_path = os.path.join(os.path.dirname(__file__), 'example')

unet = UNet2DConditionModel.from_pretrained(base_path, subfolder="unet", torch_dtype=torch.float16)
tokenizer_one = AutoTokenizer.from_pretrained(base_path, subfolder="tokenizer", use_fast=False)
tokenizer_two = AutoTokenizer.from_pretrained(base_path, subfolder="tokenizer_2", use_fast=False)
noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler")
text_encoder_one = CLIPTextModel.from_pretrained(base_path, subfolder="text_encoder", torch_dtype=torch.float16)
text_encoder_two = CLIPTextModelWithProjection.from_pretrained(base_path, subfolder="text_encoder_2", torch_dtype=torch.float16)
image_encoder = CLIPVisionModelWithProjection.from_pretrained(base_path, subfolder="image_encoder", torch_dtype=torch.float16)
vae = AutoencoderKL.from_pretrained(base_path, subfolder="vae", torch_dtype=torch.float16)
UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(base_path, subfolder="unet_encoder", torch_dtype=torch.float16)

parsing_model = Parsing(0)
openpose_model = OpenPose(0)

for model in [unet, text_encoder_one, text_encoder_two, image_encoder, vae, UNet_Encoder]:
    model.requires_grad_(False)

tensor_transfrom = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize([0.5], [0.5]),
])

pipe = TryonPipeline.from_pretrained(
    base_path,
    unet=unet,
    vae=vae,
    feature_extractor=CLIPImageProcessor(),
    text_encoder=text_encoder_one,
    text_encoder_2=text_encoder_two,
    tokenizer=tokenizer_one,
    tokenizer_2=tokenizer_two,
    scheduler=noise_scheduler,
    image_encoder=image_encoder,
    torch_dtype=torch.float16,
)
pipe.unet_encoder = UNet_Encoder

@spaces.GPU
def start_tryon(dict, garm_img, garment_des, is_checked, is_checked_crop, denoise_steps, seed):
    device = "cuda"
    openpose_model.preprocessor.body_estimation.model.to(device)
    pipe.to(device)
    pipe.unet_encoder.to(device)

    garm_img = garm_img.convert("RGB").resize((768, 1024))
    human_img_orig = dict["background"].convert("RGB")

    if is_checked_crop:
        width, height = human_img_orig.size
        target_width = int(min(width, height * (3 / 4)))
        target_height = int(min(height, width * (4 / 3)))
        left = (width - target_width) // 2
        top = (height - target_height) // 2
        cropped_img = human_img_orig.crop((left, top, left + target_width, top + target_height))
        crop_size = cropped_img.size
        human_img = cropped_img.resize((768, 1024))
    else:
        human_img = human_img_orig.resize((768, 1024))

    if is_checked:
        keypoints = openpose_model(human_img.resize((384, 512)))
        model_parse, _ = parsing_model(human_img.resize((384, 512)))
        mask, _ = get_mask_location('hd', "upper_body", model_parse, keypoints)
        mask = mask.resize((768, 1024))
    else:
        mask = pil_to_binary_mask(dict['layers'][0].convert("RGB").resize((768, 1024)))

    mask_gray = (1 - transforms.ToTensor()(mask)) * tensor_transfrom(human_img)
    mask_gray = to_pil_image((mask_gray + 1.0) / 2.0)

    human_img_arg = _apply_exif_orientation(human_img.resize((384, 512)))
    human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR")
    args = apply_net.create_argument_parser().parse_args((
        'show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml',
        './ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v',
        '--opts', 'MODEL.DEVICE', 'cuda'))
    pose_img = args.func(args, human_img_arg)
    pose_img = Image.fromarray(pose_img[:, :, ::-1]).resize((768, 1024))

    with torch.no_grad():
        with torch.cuda.amp.autocast():
            if not garment_des or not isinstance(garment_des, str):
                garment_des = "a garment"
    
            prompt = "model is wearing " + garment_des
            negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"

            if not garment_des or not isinstance(garment_des, str):
                garment_des = "a garment"
                
            prompt_embeds, neg_embeds, pooled_prompt_embeds, neg_pooled_prompt_embeds = pipe.encode_prompt([prompt], 1, True, [negative_prompt])

            prompt_c = "a photo of " + garment_des
            prompt_embeds_c, _, _, _ = pipe.encode_prompt(
                [prompt_c], 1, False, [negative_prompt])

            pose_tensor = tensor_transfrom(pose_img).unsqueeze(0).to(device)
            garm_tensor = tensor_transfrom(garm_img).unsqueeze(0).to(device)
            generator = torch.Generator(device).manual_seed(seed) if seed is not None else None

            output = pipe(
                prompt_embeds=prompt_embeds.to(device),
                negative_prompt_embeds=neg_embeds.to(device),
                pooled_prompt_embeds=pooled_prompt_embeds.to(device),
                negative_pooled_prompt_embeds=neg_pooled_prompt_embeds.to(device),
                num_inference_steps=denoise_steps,
                generator=generator,
                strength=1.0,
                pose_img=pose_tensor,
                text_embeds_cloth=prompt_embeds_c.to(device),
                cloth=garm_tensor,
                mask_image=mask,
                image=human_img,
                height=1024,
                width=768,
                ip_adapter_image=garm_img,
                guidance_scale=2.0,
            )[0]

    result_img = output[0].resize(crop_size) if is_checked_crop else output[0]
    if is_checked_crop:
        human_img_orig.paste(result_img, (left, top))
        result_img = human_img_orig

    return add_watermark(result_img), None

# --- Gradio UI setup ---
garm_list = os.listdir(os.path.join(example_path, "cloth"))
garm_list_path = [os.path.join(example_path, "cloth", g) for g in garm_list]
human_list = os.listdir(os.path.join(example_path, "human"))
human_list_path = [os.path.join(example_path, "human", h) for h in human_list]
human_ex_list = [{'background': h, 'layers': None, 'composite': None} for h in human_list_path]

image_blocks = gr.Blocks().queue()
with image_blocks as demo:
    gr.Markdown(
        """
        <div style="text-align: center; background: linear-gradient(135deg, #2541b2 0%, #1a237e 100%); padding: 2.5rem; color: white; border-radius: 0 0 20px 20px; margin-bottom: 2rem; box-shadow: 0 4px 6px rgba(0,0,0,0.1);">
            <h1 style="color: white; font-size: 2.5rem; font-weight: 600; margin-bottom: 1rem;">Deradh Virtual Try-On Experience</h1>
            <div style="margin: 1rem 0;">
                <a href="https://deradh.com" style="color: white; text-decoration: none; padding: 0.5rem 1rem; border: 2px solid white; border-radius: 25px; transition: all 0.3s ease;">
                    Visit Deradh.com
                </a>
            </div>
        </div>
        <div style="text-align: center; padding: 1rem; color: #6ed7fe; font-size: 1.2rem; font-weight: 500; margin-bottom: 2rem;">
            Experience the future of fashion with our AI-powered virtual try-on technology. Every user gets 2-3 free trials per day.
        </div>
        """)

    with gr.Row():
        with gr.Column():
            imgs = gr.ImageEditor(sources='upload', type="pil", label='Human. Mask with pen or use auto-masking', interactive=True)
            is_checked = gr.Checkbox(label="Use auto mask", value=True)
            is_checked_crop = gr.Checkbox(label="Auto-crop image", value=False)
            gr.Examples(inputs=imgs, examples_per_page=10, examples=human_ex_list)

        with gr.Column():
            garm_img = gr.Image(label="Garment", sources='upload', type="pil")
            prompt = gr.Textbox(placeholder="Garment description e.g., Blue Hoodie", show_label=False)
            gr.Examples(inputs=garm_img, examples_per_page=8, examples=garm_list_path)

        with gr.Column():
            image_out = gr.Image(label="Try-On Output", elem_id="output-img", show_share_button=False)

    try_button = gr.Button(value="Try-on")
    with gr.Accordion(label="Advanced Settings", open=False):
        denoise_steps = gr.Number(label="Denoising Steps", minimum=20, maximum=40, value=30, step=1)
        seed = gr.Number(label="Seed", minimum=-1, maximum=2147483647, step=1, value=42)

    try_button.click(
        fn=start_tryon,
        inputs=[imgs, garm_img, prompt, is_checked, is_checked_crop, denoise_steps, seed],
        outputs=[image_out, gr.Image(visible=False)],
        api_name='tryon'
    )

image_blocks.launch()