dishDecode / app.py
GoodML's picture
some threading included
d85921f verified
raw
history blame
5.22 kB
import os
import subprocess
import whisper
import requests
from flask import Flask, request, jsonify, send_file
import tempfile
import warnings
warnings.filterwarnings("ignore", category=UserWarning, module="whisper")
app = Flask(__name__)
# Gemini API settings
load_dotenv()
API_KEY = os.getenv("FIRST_API_KEY")
# Ensure the API key is loaded correctly
if not API_KEY:
raise ValueError("API Key not found. Make sure it is set in the .env file.")
GEMINI_API_ENDPOINT = "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash-latest:generateContent"
GEMINI_API_KEY = API_KEY
# Load Whisper AI model at startup
print("Loading Whisper AI model...")
whisper_model = whisper.load_model("base")
print("Whisper AI model loaded successfully.")
# Define the "/" endpoint for health check
@app.route("/", methods=["GET"])
def health_check():
return jsonify({"status": "success", "message": "API is running successfully!"}), 200
def process_video_in_background(video_file, temp_video_file_name):
"""
This function is executed in a separate thread to handle the long-running
video processing tasks such as transcription and querying the Gemini API.
"""
try:
transcription = transcribe_audio(temp_video_file_name)
if not transcription:
print("Audio transcription failed")
return
structured_data = query_gemini_api(transcription)
# Send structured data back or store it in a database, depending on your use case
print("Processing complete. Structured data:", structured_data)
except Exception as e:
print(f"Error processing video: {e}")
finally:
# Clean up temporary files
if os.path.exists(temp_video_file_name):
os.remove(temp_video_file_name)
@app.route('/process-video', methods=['POST'])
def process_video():
if 'video' not in request.files:
return jsonify({"error": "No video file provided"}), 400
video_file = request.files['video']
try:
# Save video to a temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as temp_video_file:
video_file.save(temp_video_file.name)
print(f"Video file saved: {temp_video_file.name}")
# Start the video processing in a background thread
threading.Thread(target=process_video_in_background, args=(video_file, temp_video_file.name)).start()
return jsonify({"message": "Video is being processed in the background."}), 202
except Exception as e:
return jsonify({"error": str(e)}), 500
def transcribe_audio(video_path):
"""
Transcribe audio directly from a video file using Whisper AI.
"""
try:
print(f"Transcribing video: {video_path}")
result = whisper_model.transcribe(video_path)
return result['text']
except Exception as e:
print(f"Error in transcription: {e}")
return None
def query_gemini_api(transcription):
"""
Send transcription text to Gemini API and fetch structured recipe information.
"""
try:
# Define the structured prompt
prompt = (
"Analyze the provided cooking video transcription and extract the following structured information:\n"
"1. Recipe Name: Identify the name of the dish being prepared.\n"
"2. Ingredients List: Extract a detailed list of ingredients with their respective quantities (if mentioned).\n"
"3. Steps for Preparation: Provide a step-by-step breakdown of the recipe's preparation process, organized and numbered sequentially.\n"
"4. Cooking Techniques Used: Highlight the cooking techniques demonstrated in the video, such as searing, blitzing, wrapping, etc.\n"
"5. Equipment Needed: List all tools, appliances, or utensils mentioned, e.g., blender, hot pan, cling film, etc.\n"
"6. Nutritional Information (if inferred): Provide an approximate calorie count or nutritional breakdown based on the ingredients used.\n"
"7. Serving size: In count of people or portion size.\n"
"8. Special Notes or Variations: Include any specific tips, variations, or alternatives mentioned.\n"
"9. Festive or Thematic Relevance: Note if the recipe has any special relevance to holidays, events, or seasons.\n"
f"Text: {transcription}\n"
)
payload = {
"contents": [
{"parts": [{"text": prompt}]}
]
}
headers = {"Content-Type": "application/json"}
# Send request to Gemini API
response = requests.post(
f"{GEMINI_API_ENDPOINT}?key={GEMINI_API_KEY}",
json=payload,
headers=headers
)
response.raise_for_status()
# Extract and return the structured data
data = response.json()
return data.get("candidates", [{}])[0].get("content", {}).get("parts", [{}])[0].get("text", "No result found")
except requests.exceptions.RequestException as e:
print(f"Error querying Gemini API: {e}")
return {"error": str(e)}
if __name__ == '__main__':
app.run(debug=True)