Spaces:
Running
Running
File size: 5,306 Bytes
c37b36e d85921f 35b7e36 1ab9028 d85921f c37b36e 1ab9028 c37b36e d85921f c37b36e d5b84f5 d85921f d5b84f5 c37b36e d85921f c37b36e d85921f c37b36e d85921f c37b36e d85921f c37b36e d842bdb c37b36e d842bdb c37b36e d842bdb bb47241 c37b36e d85921f c37b36e d85921f c37b36e d85921f c37b36e d85921f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
import os
import subprocess
import whisper
import requests
import tempfile
import warnings
import threading
from flask import Flask, request, jsonify, send_file, render_template
from dotenv import load_dotenv
import requests
warnings.filterwarnings("ignore", category=UserWarning, module="whisper")
app = Flask(__name__)
# Gemini API settings
load_dotenv()
API_KEY = os.getenv("FIRST_API_KEY")
# Ensure the API key is loaded correctly
if not API_KEY:
raise ValueError("API Key not found. Make sure it is set in the .env file.")
GEMINI_API_ENDPOINT = "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash-latest:generateContent"
GEMINI_API_KEY = API_KEY
# Load Whisper AI model at startup
print("Loading Whisper AI model...")
whisper_model = whisper.load_model("base")
print("Whisper AI model loaded successfully.")
# Define the "/" endpoint for health check
@app.route("/", methods=["GET"])
def health_check():
return jsonify({"status": "success", "message": "API is running successfully!"}), 200
def process_video_in_background(video_file, temp_video_file_name):
"""
This function is executed in a separate thread to handle the long-running
video processing tasks such as transcription and querying the Gemini API.
"""
try:
transcription = transcribe_audio(temp_video_file_name)
if not transcription:
print("Audio transcription failed")
return
structured_data = query_gemini_api(transcription)
# Send structured data back or store it in a database, depending on your use case
print("Processing complete. Structured data:", structured_data)
except Exception as e:
print(f"Error processing video: {e}")
finally:
# Clean up temporary files
if os.path.exists(temp_video_file_name):
os.remove(temp_video_file_name)
@app.route('/process-video', methods=['POST'])
def process_video():
if 'video' not in request.files:
return jsonify({"error": "No video file provided"}), 400
video_file = request.files['video']
try:
# Save video to a temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as temp_video_file:
video_file.save(temp_video_file.name)
print(f"Video file saved: {temp_video_file.name}")
# Start the video processing in a background thread
threading.Thread(target=process_video_in_background, args=(video_file, temp_video_file.name)).start()
return jsonify({"message": "Video is being processed in the background."}), 202
except Exception as e:
return jsonify({"error": str(e)}), 500
def transcribe_audio(video_path):
"""
Transcribe audio directly from a video file using Whisper AI.
"""
try:
print(f"Transcribing video: {video_path}")
result = whisper_model.transcribe(video_path)
return result['text']
except Exception as e:
print(f"Error in transcription: {e}")
return None
def query_gemini_api(transcription):
"""
Send transcription text to Gemini API and fetch structured recipe information.
"""
try:
# Define the structured prompt
prompt = (
"Analyze the provided cooking video transcription and extract the following structured information:\n"
"1. Recipe Name: Identify the name of the dish being prepared.\n"
"2. Ingredients List: Extract a detailed list of ingredients with their respective quantities (if mentioned).\n"
"3. Steps for Preparation: Provide a step-by-step breakdown of the recipe's preparation process, organized and numbered sequentially.\n"
"4. Cooking Techniques Used: Highlight the cooking techniques demonstrated in the video, such as searing, blitzing, wrapping, etc.\n"
"5. Equipment Needed: List all tools, appliances, or utensils mentioned, e.g., blender, hot pan, cling film, etc.\n"
"6. Nutritional Information (if inferred): Provide an approximate calorie count or nutritional breakdown based on the ingredients used.\n"
"7. Serving size: In count of people or portion size.\n"
"8. Special Notes or Variations: Include any specific tips, variations, or alternatives mentioned.\n"
"9. Festive or Thematic Relevance: Note if the recipe has any special relevance to holidays, events, or seasons.\n"
f"Text: {transcription}\n"
)
payload = {
"contents": [
{"parts": [{"text": prompt}]}
]
}
headers = {"Content-Type": "application/json"}
# Send request to Gemini API
response = requests.post(
f"{GEMINI_API_ENDPOINT}?key={GEMINI_API_KEY}",
json=payload,
headers=headers
)
response.raise_for_status()
# Extract and return the structured data
data = response.json()
return data.get("candidates", [{}])[0].get("content", {}).get("parts", [{}])[0].get("text", "No result found")
except requests.exceptions.RequestException as e:
print(f"Error querying Gemini API: {e}")
return {"error": str(e)}
if __name__ == '__main__':
app.run(debug=True) |