File size: 12,004 Bytes
3066087
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c37b36e
 
 
 
d85921f
35b7e36
3066087
 
1ab9028
d85921f
 
 
c37b36e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d85921f
c37b36e
 
d5b84f5
 
 
 
 
 
3066087
d85921f
 
 
 
 
 
 
 
3066087
d85921f
 
 
 
3066087
 
d85921f
 
3066087
d85921f
 
 
 
 
 
d5b84f5
c37b36e
 
 
d85921f
c37b36e
 
3066087
c37b36e
 
 
 
 
 
 
d85921f
3066087
 
 
 
 
 
c37b36e
3066087
 
 
 
 
c37b36e
 
d85921f
c37b36e
d842bdb
c37b36e
 
d842bdb
c37b36e
 
d842bdb
 
bb47241
c37b36e
d85921f
c37b36e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d85921f
c37b36e
 
 
 
 
 
 
 
 
 
 
 
3066087
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c37b36e
 
 
d85921f
c37b36e
 
 
3066087
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
# import os
# import subprocess
# import whisper
# import requests
# import tempfile
# import warnings
# import threading
# from flask import Flask, request, jsonify, send_file, render_template

# from dotenv import load_dotenv
# import requests




# warnings.filterwarnings("ignore", category=UserWarning, module="whisper")


# app = Flask(__name__)


# # Gemini API settings
# load_dotenv()
# API_KEY = os.getenv("FIRST_API_KEY")

# # Ensure the API key is loaded correctly
# if not API_KEY:
#     raise ValueError("API Key not found. Make sure it is set in the .env file.")

# GEMINI_API_ENDPOINT = "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash-latest:generateContent"
# GEMINI_API_KEY = API_KEY

# # Load Whisper AI model at startup
# print("Loading Whisper AI model...")
# whisper_model = whisper.load_model("base")
# print("Whisper AI model loaded successfully.")

# # Define the "/" endpoint for health check
# @app.route("/", methods=["GET"])
# def health_check():
#     return jsonify({"status": "success", "message": "API is running successfully!"}), 200


# def process_video_in_background(video_file, temp_video_file_name):
#     """
#     This function is executed in a separate thread to handle the long-running
#     video processing tasks such as transcription and querying the Gemini API.
#     """
#     try:
#         transcription = transcribe_audio(temp_video_file_name)

#         if not transcription:
#             print("Audio transcription failed")
#             return

#         structured_data = query_gemini_api(transcription)

#         # Send structured data back or store it in a database, depending on your use case
#         print("Processing complete. Structured data:", structured_data)

#     except Exception as e:
#         print(f"Error processing video: {e}")

#     finally:
#         # Clean up temporary files
#         if os.path.exists(temp_video_file_name):
#             os.remove(temp_video_file_name)


# @app.route('/process-video', methods=['POST'])
# def process_video():
#     if 'video' not in request.files:
#         return jsonify({"error": "No video file provided"}), 400

#     video_file = request.files['video']

#     try:
#         # Save video to a temporary file
#         with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as temp_video_file:
#             video_file.save(temp_video_file.name)
#             print(f"Video file saved: {temp_video_file.name}")

#             # Start the video processing in a background thread
#             threading.Thread(target=process_video_in_background, args=(video_file, temp_video_file.name)).start()

#             return jsonify({"message": "Video is being processed in the background."}), 202

#     except Exception as e:
#         return jsonify({"error": str(e)}), 500


# def transcribe_audio(video_path):
#     """
#     Transcribe audio directly from a video file using Whisper AI.
#     """
#     try:
#         print(f"Transcribing video: {video_path}")
#         result = whisper_model.transcribe(video_path)
#         return result['text']
#     except Exception as e:
#         print(f"Error in transcription: {e}")
#         return None


# def query_gemini_api(transcription):
#     """
#     Send transcription text to Gemini API and fetch structured recipe information.
#     """
#     try:
#         # Define the structured prompt
#         prompt = (
#             "Analyze the provided cooking video transcription and extract the following structured information:\n"
#             "1. Recipe Name: Identify the name of the dish being prepared.\n"
#             "2. Ingredients List: Extract a detailed list of ingredients with their respective quantities (if mentioned).\n"
#             "3. Steps for Preparation: Provide a step-by-step breakdown of the recipe's preparation process, organized and numbered sequentially.\n"
#             "4. Cooking Techniques Used: Highlight the cooking techniques demonstrated in the video, such as searing, blitzing, wrapping, etc.\n"
#             "5. Equipment Needed: List all tools, appliances, or utensils mentioned, e.g., blender, hot pan, cling film, etc.\n"
#             "6. Nutritional Information (if inferred): Provide an approximate calorie count or nutritional breakdown based on the ingredients used.\n"
#             "7. Serving size: In count of people or portion size.\n"
#             "8. Special Notes or Variations: Include any specific tips, variations, or alternatives mentioned.\n"
#             "9. Festive or Thematic Relevance: Note if the recipe has any special relevance to holidays, events, or seasons.\n"
#             f"Text: {transcription}\n"
#         )

#         payload = {
#             "contents": [
#                 {"parts": [{"text": prompt}]}
#             ]
#         }
#         headers = {"Content-Type": "application/json"}

#         # Send request to Gemini API
#         response = requests.post(
#             f"{GEMINI_API_ENDPOINT}?key={GEMINI_API_KEY}",
#             json=payload,
#             headers=headers
#         )
#         response.raise_for_status()

#         # Extract and return the structured data
#         data = response.json()
#         return data.get("candidates", [{}])[0].get("content", {}).get("parts", [{}])[0].get("text", "No result found")

#     except requests.exceptions.RequestException as e:
#         print(f"Error querying Gemini API: {e}")
#         return {"error": str(e)}


# if __name__ == '__main__':
#     app.run(debug=True)


# Above code is without polling and sleep

# Below is the latest code
import os
import whisper
import requests
import tempfile
import warnings
import threading
import time
from flask import Flask, request, jsonify
from dotenv import load_dotenv

warnings.filterwarnings("ignore", category=UserWarning, module="whisper")

app = Flask(__name__)

# Gemini API settings
load_dotenv()
API_KEY = os.getenv("FIRST_API_KEY")

# Ensure the API key is loaded correctly
if not API_KEY:
    raise ValueError("API Key not found. Make sure it is set in the .env file.")

GEMINI_API_ENDPOINT = "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash-latest:generateContent"
GEMINI_API_KEY = API_KEY

# Load Whisper AI model at startup
print("Loading Whisper AI model...")
whisper_model = whisper.load_model("base")
print("Whisper AI model loaded successfully.")

# Define the "/" endpoint for health check
@app.route("/", methods=["GET"])
def health_check():
    return jsonify({"status": "success", "message": "API is running successfully!"}), 200


def process_video_in_background(video_file, temp_video_file_name, result_container):
    """
    This function is executed in a separate thread to handle the long-running
    video processing tasks such as transcription and querying the Gemini API.
    """
    try:
        transcription = transcribe_audio(temp_video_file_name)

        if not transcription:
            result_container["error"] = "Audio transcription failed"
            return

        structured_data = query_gemini_api(transcription)

        # Save structured data to the result container to return later
        result_container["data"] = structured_data

    except Exception as e:
        result_container["error"] = f"Error processing video: {e}"

    finally:
        # Clean up temporary files
        if os.path.exists(temp_video_file_name):
            os.remove(temp_video_file_name)


@app.route('/process-video', methods=['POST'])
def process_video():
    if 'video' not in request.files:
        return jsonify({"error": "No video file provided"}), 400

    video_file = request.files['video']
    result_container = {}

    try:
        # Save video to a temporary file
        with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as temp_video_file:
            video_file.save(temp_video_file.name)
            print(f"Video file saved: {temp_video_file.name}")

            # Start the video processing in a background thread
            threading.Thread(target=process_video_in_background, args=(video_file, temp_video_file.name, result_container)).start()

            # Poll every 5 seconds to check if the result is available
            while "data" not in result_container and "error" not in result_container:
                print("Waiting for processing to complete...")
                time.sleep(5)  # Sleep for 5 seconds before checking again

            # Check for the result
            if "error" in result_container:
                return jsonify({"error": result_container["error"]}), 500
            else:
                return jsonify({"message": "Processing complete", "data": result_container["data"]}), 200

    except Exception as e:
        return jsonify({"error": str(e)}), 500


def transcribe_audio(video_path):
    """
    Transcribe audio directly from a video file using Whisper AI.
    """
    try:
        print(f"Transcribing video: {video_path}")
        result = whisper_model.transcribe(video_path)
        return result['text']
    except Exception as e:
        print(f"Error in transcription: {e}")
        return None


def query_gemini_api(transcription):
    """
    Send transcription text to Gemini API and fetch structured recipe information.
    """
    try:
        # Define the structured prompt
        prompt = (
            "Analyze the provided cooking video transcription and extract the following structured information:\n"
            "1. Recipe Name: Identify the name of the dish being prepared.\n"
            "2. Ingredients List: Extract a detailed list of ingredients with their respective quantities (if mentioned).\n"
            "3. Steps for Preparation: Provide a step-by-step breakdown of the recipe's preparation process, organized and numbered sequentially.\n"
            "4. Cooking Techniques Used: Highlight the cooking techniques demonstrated in the video, such as searing, blitzing, wrapping, etc.\n"
            "5. Equipment Needed: List all tools, appliances, or utensils mentioned, e.g., blender, hot pan, cling film, etc.\n"
            "6. Nutritional Information (if inferred): Provide an approximate calorie count or nutritional breakdown based on the ingredients used.\n"
            "7. Serving size: In count of people or portion size.\n"
            "8. Special Notes or Variations: Include any specific tips, variations, or alternatives mentioned.\n"
            "9. Festive or Thematic Relevance: Note if the recipe has any special relevance to holidays, events, or seasons.\n"
            f"Text: {transcription}\n"
        )

        payload = {
            "contents": [
                {"parts": [{"text": prompt}]}
            ]
        }
        headers = {"Content-Type": "application/json"}

        # Send request to Gemini API
        response = requests.post(
            f"{GEMINI_API_ENDPOINT}?key={GEMINI_API_KEY}",
            json=payload,
            headers=headers
        )
        response.raise_for_status()

        # Polling for response (in case Gemini takes time to process)
        polling_wait_time = 5  # Time to wait between polling attempts
        polling_max_retries = 60  # Maximum number of retries

        for attempt in range(polling_max_retries):
            print(f"Attempt {attempt + 1} to fetch Gemini API response...")
            response_data = response.json()
            
            # Check if the response is ready
            if "candidates" in response_data and len(response_data["candidates"]) > 0:
                return response_data["candidates"][0].get("content", {}).get("parts", [{}])[0].get("text", "No result found")
            
            time.sleep(polling_wait_time)  # Wait before trying again

        return "Gemini API response not ready after multiple attempts."

    except requests.exceptions.RequestException as e:
        print(f"Error querying Gemini API: {e}")
        return {"error": str(e)}


if __name__ == '__main__':
    app.run(debug=True)