grader2 / app.py
Garvitj's picture
Update app.py
7337af2 verified
raw
history blame
6.03 kB
import os
import difflib
from groq import Groq
import gradio as gr
from transformers import pipeline
import pytesseract
from sentence_transformers import SentenceTransformer, util
from PIL import Image
from typing import List
import requests
# Initialize sentence transformer model
model1 = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
# Initialize Groq client
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
# System prompt for Groq
system_prompt = {
"role": "system",
"content": "You are a useful assistant. You reply with efficient answers."
}
# Function to interact with Groq for generating response
async def chat_groq(message, history):
messages = [system_prompt]
for msg in history:
messages.append({"role": "user", "content": str(msg[0])})
messages.append({"role": "assistant", "content": str(msg[1])})
messages.append({"role": "user", "content": str(message)})
response_content = ''
stream = client.chat.completions.create(
model="llama3-70b-8192",
messages=messages,
max_tokens=1024,
temperature=1.3,
stream=True
)
for chunk in stream:
content = chunk.choices[0].delta.content
if content:
response_content += chunk.choices[0].delta.content
yield response_content
# Extract text from an image using Tesseract
def extract_text_from_image(filepath: str, languages: List[str]):
image = Image.open(filepath)
lang_str = '+'.join(languages) # Join languages for Tesseract
return pytesseract.image_to_string(image=image, lang=lang_str)
# Function to get embeddings for text using SentenceTransformer
def get_embedding(text):
return model1.encode(text, convert_to_tensor=True)
# Calculate similarity between two texts using cosine similarity
def calculate_similarity(text1, text2):
embedding1 = get_embedding(text1)
embedding2 = get_embedding(text2)
similarity = util.pytorch_cos_sim(embedding1, embedding2)
return similarity.item()
# Assign badges based on the grade
def assign_badge(grade):
if grade == 5:
return "Gold Badge 🌟"
elif grade == 4:
return "Silver Badge πŸ₯ˆ"
elif grade == 3:
return "Bronze Badge πŸ₯‰"
else:
return "Keep Improving Badge πŸ’ͺ"
# Generate visual feedback by comparing answers
def generate_visual_feedback(student_answer, model_answer):
diff = difflib.ndiff(student_answer.split(), model_answer.split())
highlighted_diff = ' '.join(
[f"**{word}**" if word.startswith('-') else word for word in diff if not word.startswith('?')]
)
return highlighted_diff
# Categorize feedback into clarity, completeness, and accuracy
def detailed_feedback(similarity_score):
if similarity_score >= 0.9:
return {"Clarity": "Excellent", "Completeness": "Complete", "Accuracy": "Accurate"}
elif similarity_score >= 0.8:
return {"Clarity": "Good", "Completeness": "Almost Complete", "Accuracy": "Mostly Accurate"}
elif similarity_score >= 0.7:
return {"Clarity": "Fair", "Completeness": "Partial", "Accuracy": "Some Errors"}
else:
return {"Clarity": "Needs Improvement", "Completeness": "Incomplete", "Accuracy": "Inaccurate"}
# Assign grades based on similarity score
def get_grade(similarity_score):
if similarity_score >= 0.9:
return 5
elif similarity_score >= 0.8:
return 4
elif similarity_score >= 0.7:
return 3
elif similarity_score >= 0.6:
return 2
else:
return 1
# Function to evaluate student's answer by comparing it to a model answer
def evaluate_answer(image, languages, model_answer):
student_answer = extract_text_from_image(image, languages)
similarity_score = calculate_similarity(student_answer, model_answer)
grade = get_grade(similarity_score)
feedback = f"Student's answer: {student_answer}\nTeacher's answer: {model_answer}"
visual_feedback = generate_visual_feedback(student_answer, model_answer)
badge = assign_badge(grade)
detailed_feedback_msg = detailed_feedback(similarity_score)
prompt = f"The student got grade: {grade} when the student's answer is: {student_answer} and the teacher's answer is: {model_answer}. Justify the grade given to the student."
return grade, similarity_score * 100, feedback, visual_feedback, badge, detailed_feedback_msg, prompt
# Main interface function for Gradio
async def gradio_interface(image, languages: List[str], model_answer, prompt="", history=[]):
grade, similarity_score, feedback, visual_feedback, badge, detailed_feedback_msg, prompt = evaluate_answer(image, languages, model_answer)
response = ""
async for result in chat_groq(prompt, history):
response = result # Get the Groq response
return grade, similarity_score, feedback, visual_feedback, badge, detailed_feedback_msg, response
# Get available Tesseract languages
language_choices = pytesseract.get_languages()
# Define Gradio interface
interface = gr.Interface(
fn=gradio_interface,
inputs=[
gr.Image(type="filepath", label="Input"),
gr.CheckboxGroup(language_choices, type="value", value=['eng'], label='Language'),
gr.Textbox(lines=2, placeholder="Enter your model answer here", label="Model Answer"),
gr.Textbox(lines=2, placeholder="Enter your prompt here", label="Prompt")
],
outputs=[
gr.Text(label="Grade"),
gr.Number(label="Similarity Score (%)"),
gr.Text(label="Feedback"),
gr.HTML(label="Visual Feedback"),
gr.Text(label="Badge"),
gr.JSON(label="Detailed Feedback"),
gr.Text(label="Generated Response")
],
title="Enhanced Automated Grading System",
description="Upload an image of your answer sheet to get a grade from 1 to 5, similarity score, visual feedback, badge, and detailed feedback based on the model answer.",
live=True
)
if __name__ == "__main__":
interface.queue()
interface.launch()