grader / app.py
Garvitj's picture
Update app.py
8defca1 verified
raw
history blame
4.22 kB
import gradio as gr
from transformers import pipeline
import pytesseract
from sentence_transformers import SentenceTransformer, util
from PIL import Image
from typing import List
import requests
# Initialize sentence transformer model
model1 = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
# Hugging Face API details
API_URL = "https://api-inference.huggingface.co/models/openai-community/gpt2"
headers = {"Authorization": "Bearer hf_TsCTtXxnvpmhFKABqKmcVLyLEhjQPsITSVx"}
# Function to interact with Hugging Face API for GPT-2
def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
# Function to generate text response from GPT-2 model using Hugging Face API
def generate_response(prompt):
response = query({"inputs": prompt})
# Check if the response contains the expected format
if isinstance(response, list) and len(response) > 0 and 'generated_text' in response[0]:
return response[0]['generated_text']
else:
# Log the response if something unexpected is returned
print("Unexpected response format:", response)
return "Sorry, I couldn't generate a response."
# Function to generate text response from GPT-2 model using Hugging Face API
# def generate_response(prompt):
# response = query({"inputs": prompt})
# return response[0]['generated_text']
# Extract text from an image using Tesseract
def extract_text_from_image(filepath: str, languages: List[str]):
image = Image.open(filepath)
lang_str = '+'.join(languages) # Join languages for Tesseract
return pytesseract.image_to_string(image=image, lang=lang_str)
# Function to get embeddings for text using SentenceTransformer
def get_embedding(text):
return model1.encode(text, convert_to_tensor=True)
# Calculate similarity between two texts using cosine similarity
def calculate_similarity(text1, text2):
embedding1 = get_embedding(text1)
embedding2 = get_embedding(text2)
similarity = util.pytorch_cos_sim(embedding1, embedding2)
return similarity.item()
# Assign grades based on similarity score
def get_grade(similarity_score):
if similarity_score >= 0.9:
return 5
elif similarity_score >= 0.8:
return 4
elif similarity_score >= 0.7:
return 3
elif similarity_score >= 0.6:
return 2
else:
return 1
# Function to evaluate student's answer by comparing it to a model answer
def evaluate_answer(image, languages):
student_answer = extract_text_from_image(image, languages)
model_answer = "The process of photosynthesis helps plants produce glucose using sunlight."
similarity_score = calculate_similarity(student_answer, model_answer)
grade = get_grade(similarity_score)
feedback = f"Student's answer: {student_answer}\nTeacher's answer: {model_answer}"
prompt=f"the student got grades: {grade} when Student's answer is: {student_answer} and Teacher's answer is: {model_answer}. justify the grades given to student"
return grade, similarity_score * 100, feedback, prompt
# Main interface function for Gradio
def gradio_interface(image, languages: List[str], prompt=""):
grade, similarity_score, feedback,prompt = evaluate_answer(image, languages)
response = generate_response(prompt)
return grade, similarity_score, feedback, response
# Get available Tesseract languages
language_choices = pytesseract.get_languages()
# Define Gradio interface
interface = gr.Interface(
fn=gradio_interface,
inputs=[
gr.Image(type="filepath", label="Input"),
gr.CheckboxGroup(language_choices, type="value", value=['eng'], label='language'),
gr.Textbox(lines=2, placeholder="Enter your prompt here", label="Prompt")
],
outputs=[
gr.Text(label="Grade"),
gr.Number(label="Similarity Score (%)"),
gr.Text(label="Feedback"),
gr.Text(label="Generated Response")
],
title="Automated Grading System",
description="Upload an image of your answer sheet to get a grade from 1 to 5, similarity score, and feedback based on the model answer.",
live=True
)
if __name__ == "__main__":
interface.launch()