grader / app.py
Garvitj's picture
Update app.py
3e6ee51 verified
raw
history blame
8.68 kB
# import gradio as gr
# from transformers import pipeline
# import pytesseract
# from sentence_transformers import SentenceTransformer, util
# from PIL import Image
# from typing import List
# import requests
# # Initialize sentence transformer model
# model1 = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
# # Hugging Face API details
# API_URL = "https://api-inference.huggingface.co/models/openai-community/gpt2"
# headers = {"Authorization": f"Bearer {hf_TsCTtXxnvpmhFKABqKmcVLyLEhjQPsITSVx}"}
# # Function to interact with Hugging Face API for GPT-2
# def query(payload):
# response = requests.post(API_URL, headers=headers, json=payload)
# return response.json()
# # Function to generate text response from GPT-2 model using Hugging Face API
# def generate_response(prompt):
# response = query({"inputs": prompt})
# # Check if the response contains the expected format
# if isinstance(response, list) and len(response) > 0 and 'generated_text' in response[0]:
# return response[0]['generated_text']
# else:
# # Log the response if something unexpected is returned
# print("Unexpected response format:", response)
# return "Sorry, I couldn't generate a response."
# # Function to generate text response from GPT-2 model using Hugging Face API
# # def generate_response(prompt):
# # response = query({"inputs": prompt})
# # return response[0]['generated_text']
# # Extract text from an image using Tesseract
# def extract_text_from_image(filepath: str, languages: List[str]):
# image = Image.open(filepath)
# lang_str = '+'.join(languages) # Join languages for Tesseract
# return pytesseract.image_to_string(image=image, lang=lang_str)
# # Function to get embeddings for text using SentenceTransformer
# def get_embedding(text):
# return model1.encode(text, convert_to_tensor=True)
# # Calculate similarity between two texts using cosine similarity
# def calculate_similarity(text1, text2):
# embedding1 = get_embedding(text1)
# embedding2 = get_embedding(text2)
# similarity = util.pytorch_cos_sim(embedding1, embedding2)
# return similarity.item()
# # Assign grades based on similarity score
# def get_grade(similarity_score):
# if similarity_score >= 0.9:
# return 5
# elif similarity_score >= 0.8:
# return 4
# elif similarity_score >= 0.7:
# return 3
# elif similarity_score >= 0.6:
# return 2
# else:
# return 1
# # Function to evaluate student's answer by comparing it to a model answer
# def evaluate_answer(image, languages):
# student_answer = extract_text_from_image(image, languages)
# model_answer = "The process of photosynthesis helps plants produce glucose using sunlight."
# similarity_score = calculate_similarity(student_answer, model_answer)
# grade = get_grade(similarity_score)
# feedback = f"Student's answer: {student_answer}\nTeacher's answer: {model_answer}"
# prompt=f"the student got grades: {grade} when Student's answer is: {student_answer} and Teacher's answer is: {model_answer}. justify the grades given to student"
# return grade, similarity_score * 100, feedback, prompt
# # Main interface function for Gradio
# def gradio_interface(image, languages: List[str], prompt=""):
# grade, similarity_score, feedback,prompt = evaluate_answer(image, languages)
# response = generate_response(prompt)
# return grade, similarity_score, feedback, response
# # Get available Tesseract languages
# language_choices = pytesseract.get_languages()
# # Define Gradio interface
# interface = gr.Interface(
# fn=gradio_interface,
# inputs=[
# gr.Image(type="filepath", label="Input"),
# gr.CheckboxGroup(language_choices, type="value", value=['eng'], label='language'),
# gr.Textbox(lines=2, placeholder="Enter your prompt here", label="Prompt")
# ],
# outputs=[
# gr.Text(label="Grade"),
# gr.Number(label="Similarity Score (%)"),
# gr.Text(label="Feedback"),
# gr.Text(label="Generated Response")
# ],
# title="Automated Grading System",
# description="Upload an image of your answer sheet to get a grade from 1 to 5, similarity score, and feedback based on the model answer.",
# live=True
# )
# if __name__ == "__main__":
# interface.launch()
import os
from groq import Groq
import gradio as gr
from transformers import pipeline
import pytesseract
from sentence_transformers import SentenceTransformer, util
from PIL import Image
from typing import List
import requests
# Initialize sentence transformer model
model1 = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
# Initialize Groq client
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
# System prompt for Groq
system_prompt = {
"role": "system",
"content": "You are a useful assistant. You reply with efficient answers."
}
# Function to interact with Groq for generating response
async def chat_groq(message, history):
messages = [system_prompt]
for msg in history:
messages.append({"role": "user", "content": str(msg[0])})
messages.append({"role": "assistant", "content": str(msg[1])})
messages.append({"role": "user", "content": str(message)})
response_content = ''
stream = client.chat.completions.create(
model="llama3-70b-8192",
messages=messages,
max_tokens=1024,
temperature=1.3,
stream=True
)
for chunk in stream:
content = chunk.choices[0].delta.content
if content:
response_content += chunk.choices[0].delta.content
yield response_content
# Extract text from an image using Tesseract
def extract_text_from_image(filepath: str, languages: List[str]):
image = Image.open(filepath)
lang_str = '+'.join(languages) # Join languages for Tesseract
return pytesseract.image_to_string(image=image, lang=lang_str)
# Function to get embeddings for text using SentenceTransformer
def get_embedding(text):
return model1.encode(text, convert_to_tensor=True)
# Calculate similarity between two texts using cosine similarity
def calculate_similarity(text1, text2):
embedding1 = get_embedding(text1)
embedding2 = get_embedding(text2)
similarity = util.pytorch_cos_sim(embedding1, embedding2)
return similarity.item()
# Assign grades based on similarity score
def get_grade(similarity_score):
if similarity_score >= 0.9:
return 5
elif similarity_score >= 0.8:
return 4
elif similarity_score >= 0.7:
return 3
elif similarity_score >= 0.6:
return 2
else:
return 1
# Function to evaluate student's answer by comparing it to a model answer
def evaluate_answer(image, languages):
student_answer = extract_text_from_image(image, languages)
model_answer = "The process of photosynthesis helps plants produce glucose using sunlight."
similarity_score = calculate_similarity(student_answer, model_answer)
grade = get_grade(similarity_score)
feedback = f"Student's answer: {student_answer}\nTeacher's answer: {model_answer}"
prompt = f"The student got grade: {grade} when the student's answer is: {student_answer} and the teacher's answer is: {model_answer}. Justify the grade given to the student."
return grade, similarity_score * 100, feedback, prompt
# Main interface function for Gradio
async def gradio_interface(image, languages: List[str], prompt="", history=[]):
grade, similarity_score, feedback, prompt = evaluate_answer(image, languages)
response = ""
async for result in chat_groq(prompt, history):
response = result # Get the Groq response
return grade, similarity_score, feedback, response
# Get available Tesseract languages
language_choices = pytesseract.get_languages()
# Define Gradio interface
interface = gr.Interface(
fn=gradio_interface,
inputs=[
gr.Image(type="filepath", label="Input"),
gr.CheckboxGroup(language_choices, type="value", value=['eng'], label='Language'),
gr.Textbox(lines=2, placeholder="Enter your prompt here", label="Prompt")
],
outputs=[
gr.Text(label="Grade"),
gr.Number(label="Similarity Score (%)"),
gr.Text(label="Feedback"),
gr.Text(label="Generated Response")
],
title="Automated Grading System",
description="Upload an image of your answer sheet to get a grade from 1 to 5, similarity score, and feedback based on the model answer.",
live=True
)
if __name__ == "__main__":
interface.queue()
interface.launch()