File size: 4,021 Bytes
f7dfa37
eada6b0
f7dfa37
 
 
 
a8d0538
f7dfa37
 
 
eada6b0
f7dfa37
eada6b0
 
f7dfa37
eada6b0
 
 
 
 
 
f7dfa37
eada6b0
 
 
9263c0f
eada6b0
9263c0f
77c3fb7
eada6b0
 
4e5c44e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7dfa37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8d0538
f7dfa37
 
 
 
 
 
 
860f072
f7dfa37
 
 
eada6b0
 
 
f7dfa37
 
 
 
860f072
 
 
 
 
 
 
 
 
f7dfa37
 
 
860f072
 
 
7e73101
f7dfa37
 
860f072
f7dfa37
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
import torch
import numpy as np
import cv2
from PIL import Image
import pytesseract as tess
from sentence_transformers import SentenceTransformer, util
import io

# save_directory = "spaces/Garvitj/grader"

# # Load the tokenizer from the saved directory
# tokenizer = AutoTokenizer.from_pretrained(save_directory)

# # Load the model from the saved directory
# model = AutoModelForCausalLM.from_pretrained(
#     save_directory,
#     torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
#     device_map="auto" if torch.cuda.is_available() else None
# )

# # Move model to the appropriate device (CPU or CUDA)
# device = "cuda" if torch.cuda.is_available() else "cpu"
# model.to(device)

# print(f"Model and tokenizer loaded from {save_directory}")

tess.pytesseract.tesseract_cmd = r"tesseract"

# Use a pipeline as a high-level helper
# pipe = pipeline("text-generation", model="eachadea/vicuna-7b-1.1")

# Initialize the pipeline with the Hugging Face API
# pipe = pipeline("text-generation", model="eachadea/vicuna-7b-1.1", api_key="your_api_key")
import requests

API_URL = "https://api-inference.huggingface.co/models/openai-community/gpt2"
headers = {"Authorization": "hf_TsCTtXxnvpmhFKABqKmcVLyLEhjQPsITSVx"}

def query(payload):
	response = requests.post(API_URL, headers=headers, json=payload)
	return response.json()
	
# output = query({
# 	"inputs": "Can you please let us know more details about your ",
# })

def generate_response(prompt):
    # Generate response from the API
    response = query({"inputs":prompt})
    return response[0]['generated_text']


def get_embedding(text):
    return model1.encode(text, convert_to_tensor=True)

def calculate_similarity(text1, text2):
    embedding1 = get_embedding(text1)
    embedding2 = get_embedding(text2)
    similarity = util.pytorch_cos_sim(embedding1, embedding2)
    return similarity.item()

def get_grade(similarity_score):
    if similarity_score >= 0.9:
        return 5
    elif similarity_score >= 0.8:
        return 4
    elif similarity_score >= 0.7:
        return 3
    elif similarity_score >= 0.6:
        return 2
    else:
        return 1

def extract_text_from_image(image):
    # Convert PIL image to RGB format
    image = image.convert('RGB')
    # Use pytesseract to extract text from the image
    text = tess.image_to_string(image)
    return text.strip()

def evaluate_answer(image):
    student_answer = extract_text_from_image(image)
    model_answer = "The process of photosynthesis helps plants produce glucose using sunlight."
    similarity_score = calculate_similarity(student_answer, model_answer)
    grade = get_grade(similarity_score)
    feedback = f"Student's answer: {student_answer}\nTeacher's answer: {model_answer}"
    return grade, similarity_score * 100, feedback

def generate_response(prompt):
    # Generate response from the new model using the pipeline
    response = pipe(prompt, max_length=150, temperature=0.7)
    return response[0]['generated_text']

def gradio_interface(image, prompt):
    grade, similarity_score, feedback = evaluate_answer(image)
    response = generate_response(prompt)
    return grade, similarity_score, response

# # Define Gradio interface
# interface = gr.Interface(
#     fn=gradio_interface,
#     inputs=[gr.Image(type="pil"), gr.Textbox(lines=2, placeholder="Enter your prompt here")],
#     outputs=[gr.Label(), gr.Label(), gr.Textbox(), gr.Textbox()],
#     live=True
# )

interface = gr.Interface(
    fn=gradio_interface,
    inputs=gr.Image(type="pil", label="Upload your answer sheet"),
    outputs=[gr.Text(label="Grade"), gr.Number(label="Similarity Score (%)"), gr.Text(label="Feedback")],
    title="Automated Grading System",
    description="Upload an image of your answer sheet to get a grade from 1 to 5, similarity score, and feedback based on the model answer.",
    live=True
)
    

if __name__ == "__main__":
    interface.launch()