Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import torch
|
4 |
import numpy as np
|
5 |
import cv2
|
@@ -8,26 +8,28 @@ import pytesseract as tess
|
|
8 |
from sentence_transformers import SentenceTransformer, util
|
9 |
import io
|
10 |
|
11 |
-
save_directory="spaces/Garvitj/grader"
|
12 |
|
13 |
-
# Load the tokenizer from the saved directory
|
14 |
-
tokenizer = AutoTokenizer.from_pretrained(save_directory)
|
15 |
|
16 |
-
# Load the model from the saved directory
|
17 |
-
model = AutoModelForCausalLM.from_pretrained(
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
)
|
22 |
|
23 |
-
# Move model to the appropriate device (CPU or CUDA)
|
24 |
-
|
|
|
25 |
|
26 |
-
print(f"Model and tokenizer loaded from {save_directory}")
|
27 |
|
28 |
tess.pytesseract.tesseract_cmd = r"/app/tesseract.exe"
|
29 |
-
|
30 |
-
|
|
|
31 |
|
32 |
def get_embedding(text):
|
33 |
return model1.encode(text, convert_to_tensor=True)
|
@@ -62,18 +64,13 @@ def evaluate_answer(image):
|
|
62 |
model_answer = "The process of photosynthesis helps plants produce glucose using sunlight."
|
63 |
similarity_score = calculate_similarity(student_answer, model_answer)
|
64 |
grade = get_grade(similarity_score)
|
65 |
-
feedback =
|
66 |
return grade, similarity_score * 100, feedback
|
67 |
|
68 |
def generate_response(prompt):
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
with torch.no_grad():
|
73 |
-
outputs = model.generate(inputs.input_ids, max_length=150, temperature=0.7)
|
74 |
-
|
75 |
-
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
76 |
-
return response
|
77 |
|
78 |
def gradio_interface(image, prompt):
|
79 |
grade, similarity_score, feedback = evaluate_answer(image)
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
3 |
import torch
|
4 |
import numpy as np
|
5 |
import cv2
|
|
|
8 |
from sentence_transformers import SentenceTransformer, util
|
9 |
import io
|
10 |
|
11 |
+
# save_directory = "spaces/Garvitj/grader"
|
12 |
|
13 |
+
# # Load the tokenizer from the saved directory
|
14 |
+
# tokenizer = AutoTokenizer.from_pretrained(save_directory)
|
15 |
|
16 |
+
# # Load the model from the saved directory
|
17 |
+
# model = AutoModelForCausalLM.from_pretrained(
|
18 |
+
# save_directory,
|
19 |
+
# torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
20 |
+
# device_map="auto" if torch.cuda.is_available() else None
|
21 |
+
# )
|
22 |
|
23 |
+
# # Move model to the appropriate device (CPU or CUDA)
|
24 |
+
# device = "cuda" if torch.cuda.is_available() else "cpu"
|
25 |
+
# model.to(device)
|
26 |
|
27 |
+
# print(f"Model and tokenizer loaded from {save_directory}")
|
28 |
|
29 |
tess.pytesseract.tesseract_cmd = r"/app/tesseract.exe"
|
30 |
+
|
31 |
+
# Use a pipeline as a high-level helper
|
32 |
+
pipe = pipeline("text-generation", model="eachadea/vicuna-7b-1.1")
|
33 |
|
34 |
def get_embedding(text):
|
35 |
return model1.encode(text, convert_to_tensor=True)
|
|
|
64 |
model_answer = "The process of photosynthesis helps plants produce glucose using sunlight."
|
65 |
similarity_score = calculate_similarity(student_answer, model_answer)
|
66 |
grade = get_grade(similarity_score)
|
67 |
+
feedback = generate_response("Student's answer: {student_answer}\nTeacher's answer: {model_answer}")
|
68 |
return grade, similarity_score * 100, feedback
|
69 |
|
70 |
def generate_response(prompt):
|
71 |
+
# Generate response from the new model using the pipeline
|
72 |
+
response = pipe(prompt, max_length=150, temperature=0.7)
|
73 |
+
return response[0]['generated_text']
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
def gradio_interface(image, prompt):
|
76 |
grade, similarity_score, feedback = evaluate_answer(image)
|