File size: 14,405 Bytes
2aa09ae
f857fca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
339ebaf
 
 
 
 
 
 
 
f857fca
 
 
 
 
339ebaf
 
 
f857fca
 
339ebaf
f857fca
 
 
 
 
339ebaf
f857fca
 
 
339ebaf
f857fca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
339ebaf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f857fca
339ebaf
 
 
f857fca
 
 
 
 
339ebaf
 
 
 
 
 
 
 
 
 
f857fca
339ebaf
 
 
 
 
 
 
 
 
 
 
 
 
 
f857fca
339ebaf
 
 
 
 
 
 
 
f7dfa37
2aa09ae
d9f22c4
f7dfa37
2aa09ae
3583331
4e5c44e
f857fca
 
 
4e5c44e
f857fca
 
2aa09ae
f857fca
 
339ebaf
4e5c44e
f857fca
 
 
 
339ebaf
 
 
 
4e5c44e
f857fca
339ebaf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f857fca
339ebaf
4e5c44e
f857fca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7dfa37
f857fca
 
f7dfa37
f857fca
 
 
 
f7dfa37
f857fca
f7dfa37
f857fca
f7dfa37
f857fca
f7dfa37
f857fca
f7dfa37
f857fca
f7dfa37
 
 
 
f857fca
 
 
 
 
f7dfa37
f857fca
 
 
f7dfa37
f857fca
 
 
 
 
 
 
 
339ebaf
f857fca
 
 
 
339ebaf
 
f857fca
860f072
f857fca
2aa09ae
 
3e6ee51
 
 
 
f857fca
3e6ee51
 
 
 
 
 
 
 
 
 
 
 
f7dfa37
 
3e6ee51
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387

# # import gradio as gr
# # from transformers import pipeline
# # import pytesseract
# # from sentence_transformers import SentenceTransformer, util
# # from PIL import Image
# # from typing import List
# # import requests

# # # Initialize sentence transformer model
# # model1 = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')

# # # Hugging Face API details
# # API_URL = "https://api-inference.huggingface.co/models/openai-community/gpt2"
# # headers = {"Authorization": f"Bearer {hf_TsCTtXxnvpmhFKABqKmcVLyLEhjQPsITSVx}"}

# # # Function to interact with Hugging Face API for GPT-2
# # def query(payload):
# #     response = requests.post(API_URL, headers=headers, json=payload)
# #     return response.json()

# # # Function to generate text response from GPT-2 model using Hugging Face API
# # def generate_response(prompt):
# #     response = query({"inputs": prompt})
    
# #     # Check if the response contains the expected format
# #     if isinstance(response, list) and len(response) > 0 and 'generated_text' in response[0]:
# #         return response[0]['generated_text']
# #     else:
# #         # Log the response if something unexpected is returned
# #         print("Unexpected response format:", response)
# #         return "Sorry, I couldn't generate a response."
    

# # # Function to generate text response from GPT-2 model using Hugging Face API
# # # def generate_response(prompt):
# # #     response = query({"inputs": prompt})
# # #     return response[0]['generated_text']

# # # Extract text from an image using Tesseract
# # def extract_text_from_image(filepath: str, languages: List[str]):
# #     image = Image.open(filepath)
# #     lang_str = '+'.join(languages)  # Join languages for Tesseract
# #     return pytesseract.image_to_string(image=image, lang=lang_str)

# # # Function to get embeddings for text using SentenceTransformer
# # def get_embedding(text):
# #     return model1.encode(text, convert_to_tensor=True)

# # # Calculate similarity between two texts using cosine similarity
# # def calculate_similarity(text1, text2):
# #     embedding1 = get_embedding(text1)
# #     embedding2 = get_embedding(text2)
# #     similarity = util.pytorch_cos_sim(embedding1, embedding2)
# #     return similarity.item()

# # # Assign grades based on similarity score
# # def get_grade(similarity_score):
# #     if similarity_score >= 0.9:
# #         return 5
# #     elif similarity_score >= 0.8:
# #         return 4
# #     elif similarity_score >= 0.7:
# #         return 3
# #     elif similarity_score >= 0.6:
# #         return 2
# #     else:
# #         return 1

# # # Function to evaluate student's answer by comparing it to a model answer
# # def evaluate_answer(image, languages):
# #     student_answer = extract_text_from_image(image, languages)
# #     model_answer = "The process of photosynthesis helps plants produce glucose using sunlight."
# #     similarity_score = calculate_similarity(student_answer, model_answer)
# #     grade = get_grade(similarity_score)
# #     feedback = f"Student's answer: {student_answer}\nTeacher's answer: {model_answer}"
# #     prompt=f"the student got grades: {grade} when Student's answer is: {student_answer} and Teacher's answer is: {model_answer}. justify the grades given to student"
# #     return grade, similarity_score * 100, feedback, prompt

# # # Main interface function for Gradio
# # def gradio_interface(image, languages: List[str], prompt=""):
# #     grade, similarity_score, feedback,prompt = evaluate_answer(image, languages)
# #     response = generate_response(prompt)
# #     return grade, similarity_score, feedback, response

# # # Get available Tesseract languages
# # language_choices = pytesseract.get_languages()

# # # Define Gradio interface
# # interface = gr.Interface(
# #     fn=gradio_interface,
# #     inputs=[
# #         gr.Image(type="filepath", label="Input"), 
# #         gr.CheckboxGroup(language_choices, type="value", value=['eng'], label='language'),
# #         gr.Textbox(lines=2, placeholder="Enter your prompt here", label="Prompt")
# #     ],
# #     outputs=[
# #         gr.Text(label="Grade"), 
# #         gr.Number(label="Similarity Score (%)"), 
# #         gr.Text(label="Feedback"), 
# #         gr.Text(label="Generated Response")
# #     ],
# #     title="Automated Grading System",
# #     description="Upload an image of your answer sheet to get a grade from 1 to 5, similarity score, and feedback based on the model answer.",
# #     live=True
# # )

# # if __name__ == "__main__":
# #     interface.launch()





# import os
# from groq import Groq
# import gradio as gr
# from transformers import pipeline
# import pytesseract
# from sentence_transformers import SentenceTransformer, util
# from PIL import Image
# from typing import List
# import requests



# import os
# os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = "constant-jigsaw-437209-r0-22d4c9dadcc9.json"

# # Initialize sentence transformer model
# model1 = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')

# # Initialize Groq client
# client = Groq(api_key=os.environ.get("GROQ_API_KEY"))

# # System prompt for Groq
# system_prompt = {
#     "role": "system",
#     "content": "You are a useful assistant. You reply with efficient answers."
# }

# # Function to interact with Groq for generating response
# async def chat_groq(message, history):
#     messages = [system_prompt]

#     for msg in history:
#         messages.append({"role": "user", "content": str(msg[0])})
#         messages.append({"role": "assistant", "content": str(msg[1])})

#     messages.append({"role": "user", "content": str(message)})

#     response_content = ''
    
#     stream = client.chat.completions.create(
#         model="llama3-70b-8192",
#         messages=messages,
#         max_tokens=1024,
#         temperature=1.3,
#         stream=True
#     )

#     for chunk in stream:
#         content = chunk.choices[0].delta.content
#         if content:
#             response_content += chunk.choices[0].delta.content
#         yield response_content

# # Extract text from an image using Tesseract
# def extract_text_from_image(filepath: str, languages: List[str]):
#     image = Image.open(filepath)
#     lang_str = '+'.join(languages)  # Join languages for Tesseract
#     return pytesseract.image_to_string(image=image, lang=lang_str)

# # Function to get embeddings for text using SentenceTransformer
# def get_embedding(text):
#     return model1.encode(text, convert_to_tensor=True)

# # Calculate similarity between two texts using cosine similarity
# def calculate_similarity(text1, text2):
#     embedding1 = get_embedding(text1)
#     embedding2 = get_embedding(text2)
#     similarity = util.pytorch_cos_sim(embedding1, embedding2)
#     return similarity.item()

# # Assign grades based on similarity score
# def get_grade(similarity_score):
#     if similarity_score >= 0.9:
#         return 5
#     elif similarity_score >= 0.8:
#         return 4
#     elif similarity_score >= 0.7:
#         return 3
#     elif similarity_score >= 0.6:
#         return 2
#     else:
#         return 1

# # Function to evaluate student's answer by comparing it to a model answer
# def evaluate_answer(image, languages):
#     student_answer = extract_text_from_image(image, languages)
#     model_answer = "The process of photosynthesis helps plants produce glucose using sunlight."
#     similarity_score = calculate_similarity(student_answer, model_answer)
#     grade = get_grade(similarity_score)
#     feedback = f"Student's answer: {student_answer}\nTeacher's answer: {model_answer}"
#     prompt = f"The student got grade: {grade} when the student's answer is: {student_answer} and the teacher's answer is: {model_answer}. Justify the grade given to the student."
#     return grade, similarity_score * 100, feedback, prompt

# # Main interface function for Gradio
# async def gradio_interface(image, languages: List[str], prompt="", history=[]):
#     grade, similarity_score, feedback, prompt = evaluate_answer(image, languages)
#     response = ""
#     async for result in chat_groq(prompt, history):
#         response = result  # Get the Groq response
#     return grade, similarity_score, feedback, response

# # Get available Tesseract languages
# language_choices = pytesseract.get_languages()

# # Define Gradio interface
# interface = gr.Interface(
#     fn=gradio_interface,
#     inputs=[
#         gr.Image(type="filepath", label="Input"), 
#         gr.CheckboxGroup(language_choices, type="value", value=['eng'], label='Languaage'),
#         gr.Textbox(lines=2, placeholder="Enter your prompt here", label="Prompt")
#     ],
#     outputs=[
#         gr.Text(label="Grade"), 
#         gr.Number(label="Similarity Score (%)"), 
#         gr.Text(label="Feedback"), 
#         gr.Text(label="Generated Response")
#     ],
#     title="Automated Grading System",
#     description="Upload an image of your answer sheet to get a grade from 1 to 5, similarity score, and feedback based on the model answer.",
#     live=True
# )

# if __name__ == "__main__":
#     interface.queue()
#     interface.launch()





import os
from groq import Groq
import gradio as gr
from transformers import pipeline
import pytesseract
from sentence_transformers import SentenceTransformer, util
from PIL import Image
from typing import List
import requests
from nltk.metrics.distance import edit_distance  # Levenshtein distance
from google.cloud import vision
import io

# Set up environment
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = "constant-jigsaw-437209-r0-22d4c9dadcc9.json"

# Initialize models
model1 = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))

# Initialize Google Vision Client
vision_client = vision.ImageAnnotatorClient()

# Define system prompt for Groq
system_prompt = {
    "role": "system",
    "content": "You are a useful assistant. You reply with efficient answers."
}

# Groq chat function
async def chat_groq(message, history):
    messages = [system_prompt]
    for msg in history:
        messages.append({"role": "user", "content": str(msg[0])})
        messages.append({"role": "assistant", "content": str(msg[1])})
    messages.append({"role": "user", "content": str(message)})

    response_content = ''
    stream = client.chat.completions.create(
        model="llama3-70b-8192",
        messages=messages,
        max_tokens=1024,
        temperature=1.3,
        stream=True
    )
    for chunk in stream:
        content = chunk.choices[0].delta.content
        if content:
            response_content += content
        yield response_content

# Extract text using Google Vision OCR
def extract_text_from_image(image_path):
    with io.open(image_path, 'rb') as image_file:
        content = image_file.read()
    image = vision.Image(content=content)
    response = vision_client.text_detection(image=image, image_context={"language_hints": ["en"]})
    texts = response.text_annotations
    if texts:
        return texts[0].description
    return "No text detected."

# Function to calculate text similarity (embedding + Levenshtein distance)
def calculate_similarity(text1, text2):
    embedding1 = model1.encode(text1, convert_to_tensor=True)
    embedding2 = model1.encode(text2, convert_to_tensor=True)

    # Cosine similarity of embeddings
    cosine_similarity = util.pytorch_cos_sim(embedding1, embedding2).item()

    # Levenshtein distance (word order similarity)
    word_order_similarity = 1 - (edit_distance(text1.split(), text2.split()) / max(len(text1.split()), len(text2.split())))

    # Combine similarity scores
    alpha = 0.7  # Weighting factor
    combined_similarity = (alpha * cosine_similarity) + ((1 - alpha) * word_order_similarity)
    return combined_similarity, word_order_similarity, cosine_similarity

# Function to map similarity score to grade
def get_grade(similarity_score):
    if similarity_score >= 1:
        return 5
    elif similarity_score >= 0.9:
        return 4
    elif similarity_score >= 0.8:
        return 3
    elif similarity_score >= 0.75:
        return 2
    else:
        return 1

# Evaluate answer based on similarity with the model answer
def evaluate_answer(student_answer):
    model_answer = "Photosynthesis is the process plants use to make their own food using sunlight. They take in carbon dioxide from the air and water from the soil. Using sunlight, they convert these into glucose (a type of sugar that gives them energy) and oxygen, which they release back into the air."
    
    similarity_score, ws, cs = calculate_similarity(student_answer, model_answer)
    grade = get_grade(similarity_score)
    
    feedback = generate_feedback(student_answer, model_answer)
    return grade, similarity_score * 100, feedback, ws, cs

# Function to generate feedback
def generate_feedback(student_answer, model_answer):
    feedback = []
    if student_answer.lower() not in model_answer.lower():
        feedback.append("The answer is not closely aligned with the model answer.")
    return " ".join(feedback) if feedback else "Answer is well aligned with the model."

# Gradio interface for interaction
async def gradio_interface(image, languages: List[str], prompt="", history=[]):
    student_answer = extract_text_from_image(image)
    grade, similarity_score, feedback, ws, cs = evaluate_answer(student_answer)
    
    # Generate response using Groq chat
    response = ""
    async for result in chat_groq(prompt, history):
        response = result

    return grade, similarity_score, feedback, response

# Define Gradio interface
interface = gr.Interface(
    fn=gradio_interface,
    inputs=[
        gr.Image(type="filepath", label="Input"), 
        gr.CheckboxGroup(['eng', 'fra', 'spa'], type="value", value=['eng'], label='Language'),
        gr.Textbox(lines=2, placeholder="Enter your prompt here", label="Prompt")
    ],
    outputs=[
        gr.Text(label="Grade"), 
        gr.Number(label="Similarity Score (%)"), 
        gr.Text(label="Feedback"), 
        gr.Text(label="Generated Response")
    ],
    title="Automated Grading System",
    description="Upload an image of your answer sheet to get a grade from 1 to 5, similarity score, and feedback based on the model answer.",
    live=True
)

if __name__ == "__main__":
    interface.launch()