File size: 14,405 Bytes
2aa09ae f857fca 339ebaf f857fca 339ebaf f857fca 339ebaf f857fca 339ebaf f857fca 339ebaf f857fca 339ebaf f857fca 339ebaf f857fca 339ebaf f857fca 339ebaf f857fca 339ebaf f7dfa37 2aa09ae d9f22c4 f7dfa37 2aa09ae 3583331 4e5c44e f857fca 4e5c44e f857fca 2aa09ae f857fca 339ebaf 4e5c44e f857fca 339ebaf 4e5c44e f857fca 339ebaf f857fca 339ebaf 4e5c44e f857fca f7dfa37 f857fca f7dfa37 f857fca f7dfa37 f857fca f7dfa37 f857fca f7dfa37 f857fca f7dfa37 f857fca f7dfa37 f857fca f7dfa37 f857fca f7dfa37 f857fca f7dfa37 f857fca 339ebaf f857fca 339ebaf f857fca 860f072 f857fca 2aa09ae 3e6ee51 f857fca 3e6ee51 f7dfa37 3e6ee51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 |
# # import gradio as gr
# # from transformers import pipeline
# # import pytesseract
# # from sentence_transformers import SentenceTransformer, util
# # from PIL import Image
# # from typing import List
# # import requests
# # # Initialize sentence transformer model
# # model1 = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
# # # Hugging Face API details
# # API_URL = "https://api-inference.huggingface.co/models/openai-community/gpt2"
# # headers = {"Authorization": f"Bearer {hf_TsCTtXxnvpmhFKABqKmcVLyLEhjQPsITSVx}"}
# # # Function to interact with Hugging Face API for GPT-2
# # def query(payload):
# # response = requests.post(API_URL, headers=headers, json=payload)
# # return response.json()
# # # Function to generate text response from GPT-2 model using Hugging Face API
# # def generate_response(prompt):
# # response = query({"inputs": prompt})
# # # Check if the response contains the expected format
# # if isinstance(response, list) and len(response) > 0 and 'generated_text' in response[0]:
# # return response[0]['generated_text']
# # else:
# # # Log the response if something unexpected is returned
# # print("Unexpected response format:", response)
# # return "Sorry, I couldn't generate a response."
# # # Function to generate text response from GPT-2 model using Hugging Face API
# # # def generate_response(prompt):
# # # response = query({"inputs": prompt})
# # # return response[0]['generated_text']
# # # Extract text from an image using Tesseract
# # def extract_text_from_image(filepath: str, languages: List[str]):
# # image = Image.open(filepath)
# # lang_str = '+'.join(languages) # Join languages for Tesseract
# # return pytesseract.image_to_string(image=image, lang=lang_str)
# # # Function to get embeddings for text using SentenceTransformer
# # def get_embedding(text):
# # return model1.encode(text, convert_to_tensor=True)
# # # Calculate similarity between two texts using cosine similarity
# # def calculate_similarity(text1, text2):
# # embedding1 = get_embedding(text1)
# # embedding2 = get_embedding(text2)
# # similarity = util.pytorch_cos_sim(embedding1, embedding2)
# # return similarity.item()
# # # Assign grades based on similarity score
# # def get_grade(similarity_score):
# # if similarity_score >= 0.9:
# # return 5
# # elif similarity_score >= 0.8:
# # return 4
# # elif similarity_score >= 0.7:
# # return 3
# # elif similarity_score >= 0.6:
# # return 2
# # else:
# # return 1
# # # Function to evaluate student's answer by comparing it to a model answer
# # def evaluate_answer(image, languages):
# # student_answer = extract_text_from_image(image, languages)
# # model_answer = "The process of photosynthesis helps plants produce glucose using sunlight."
# # similarity_score = calculate_similarity(student_answer, model_answer)
# # grade = get_grade(similarity_score)
# # feedback = f"Student's answer: {student_answer}\nTeacher's answer: {model_answer}"
# # prompt=f"the student got grades: {grade} when Student's answer is: {student_answer} and Teacher's answer is: {model_answer}. justify the grades given to student"
# # return grade, similarity_score * 100, feedback, prompt
# # # Main interface function for Gradio
# # def gradio_interface(image, languages: List[str], prompt=""):
# # grade, similarity_score, feedback,prompt = evaluate_answer(image, languages)
# # response = generate_response(prompt)
# # return grade, similarity_score, feedback, response
# # # Get available Tesseract languages
# # language_choices = pytesseract.get_languages()
# # # Define Gradio interface
# # interface = gr.Interface(
# # fn=gradio_interface,
# # inputs=[
# # gr.Image(type="filepath", label="Input"),
# # gr.CheckboxGroup(language_choices, type="value", value=['eng'], label='language'),
# # gr.Textbox(lines=2, placeholder="Enter your prompt here", label="Prompt")
# # ],
# # outputs=[
# # gr.Text(label="Grade"),
# # gr.Number(label="Similarity Score (%)"),
# # gr.Text(label="Feedback"),
# # gr.Text(label="Generated Response")
# # ],
# # title="Automated Grading System",
# # description="Upload an image of your answer sheet to get a grade from 1 to 5, similarity score, and feedback based on the model answer.",
# # live=True
# # )
# # if __name__ == "__main__":
# # interface.launch()
# import os
# from groq import Groq
# import gradio as gr
# from transformers import pipeline
# import pytesseract
# from sentence_transformers import SentenceTransformer, util
# from PIL import Image
# from typing import List
# import requests
# import os
# os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = "constant-jigsaw-437209-r0-22d4c9dadcc9.json"
# # Initialize sentence transformer model
# model1 = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
# # Initialize Groq client
# client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
# # System prompt for Groq
# system_prompt = {
# "role": "system",
# "content": "You are a useful assistant. You reply with efficient answers."
# }
# # Function to interact with Groq for generating response
# async def chat_groq(message, history):
# messages = [system_prompt]
# for msg in history:
# messages.append({"role": "user", "content": str(msg[0])})
# messages.append({"role": "assistant", "content": str(msg[1])})
# messages.append({"role": "user", "content": str(message)})
# response_content = ''
# stream = client.chat.completions.create(
# model="llama3-70b-8192",
# messages=messages,
# max_tokens=1024,
# temperature=1.3,
# stream=True
# )
# for chunk in stream:
# content = chunk.choices[0].delta.content
# if content:
# response_content += chunk.choices[0].delta.content
# yield response_content
# # Extract text from an image using Tesseract
# def extract_text_from_image(filepath: str, languages: List[str]):
# image = Image.open(filepath)
# lang_str = '+'.join(languages) # Join languages for Tesseract
# return pytesseract.image_to_string(image=image, lang=lang_str)
# # Function to get embeddings for text using SentenceTransformer
# def get_embedding(text):
# return model1.encode(text, convert_to_tensor=True)
# # Calculate similarity between two texts using cosine similarity
# def calculate_similarity(text1, text2):
# embedding1 = get_embedding(text1)
# embedding2 = get_embedding(text2)
# similarity = util.pytorch_cos_sim(embedding1, embedding2)
# return similarity.item()
# # Assign grades based on similarity score
# def get_grade(similarity_score):
# if similarity_score >= 0.9:
# return 5
# elif similarity_score >= 0.8:
# return 4
# elif similarity_score >= 0.7:
# return 3
# elif similarity_score >= 0.6:
# return 2
# else:
# return 1
# # Function to evaluate student's answer by comparing it to a model answer
# def evaluate_answer(image, languages):
# student_answer = extract_text_from_image(image, languages)
# model_answer = "The process of photosynthesis helps plants produce glucose using sunlight."
# similarity_score = calculate_similarity(student_answer, model_answer)
# grade = get_grade(similarity_score)
# feedback = f"Student's answer: {student_answer}\nTeacher's answer: {model_answer}"
# prompt = f"The student got grade: {grade} when the student's answer is: {student_answer} and the teacher's answer is: {model_answer}. Justify the grade given to the student."
# return grade, similarity_score * 100, feedback, prompt
# # Main interface function for Gradio
# async def gradio_interface(image, languages: List[str], prompt="", history=[]):
# grade, similarity_score, feedback, prompt = evaluate_answer(image, languages)
# response = ""
# async for result in chat_groq(prompt, history):
# response = result # Get the Groq response
# return grade, similarity_score, feedback, response
# # Get available Tesseract languages
# language_choices = pytesseract.get_languages()
# # Define Gradio interface
# interface = gr.Interface(
# fn=gradio_interface,
# inputs=[
# gr.Image(type="filepath", label="Input"),
# gr.CheckboxGroup(language_choices, type="value", value=['eng'], label='Languaage'),
# gr.Textbox(lines=2, placeholder="Enter your prompt here", label="Prompt")
# ],
# outputs=[
# gr.Text(label="Grade"),
# gr.Number(label="Similarity Score (%)"),
# gr.Text(label="Feedback"),
# gr.Text(label="Generated Response")
# ],
# title="Automated Grading System",
# description="Upload an image of your answer sheet to get a grade from 1 to 5, similarity score, and feedback based on the model answer.",
# live=True
# )
# if __name__ == "__main__":
# interface.queue()
# interface.launch()
import os
from groq import Groq
import gradio as gr
from transformers import pipeline
import pytesseract
from sentence_transformers import SentenceTransformer, util
from PIL import Image
from typing import List
import requests
from nltk.metrics.distance import edit_distance # Levenshtein distance
from google.cloud import vision
import io
# Set up environment
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = "constant-jigsaw-437209-r0-22d4c9dadcc9.json"
# Initialize models
model1 = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
# Initialize Google Vision Client
vision_client = vision.ImageAnnotatorClient()
# Define system prompt for Groq
system_prompt = {
"role": "system",
"content": "You are a useful assistant. You reply with efficient answers."
}
# Groq chat function
async def chat_groq(message, history):
messages = [system_prompt]
for msg in history:
messages.append({"role": "user", "content": str(msg[0])})
messages.append({"role": "assistant", "content": str(msg[1])})
messages.append({"role": "user", "content": str(message)})
response_content = ''
stream = client.chat.completions.create(
model="llama3-70b-8192",
messages=messages,
max_tokens=1024,
temperature=1.3,
stream=True
)
for chunk in stream:
content = chunk.choices[0].delta.content
if content:
response_content += content
yield response_content
# Extract text using Google Vision OCR
def extract_text_from_image(image_path):
with io.open(image_path, 'rb') as image_file:
content = image_file.read()
image = vision.Image(content=content)
response = vision_client.text_detection(image=image, image_context={"language_hints": ["en"]})
texts = response.text_annotations
if texts:
return texts[0].description
return "No text detected."
# Function to calculate text similarity (embedding + Levenshtein distance)
def calculate_similarity(text1, text2):
embedding1 = model1.encode(text1, convert_to_tensor=True)
embedding2 = model1.encode(text2, convert_to_tensor=True)
# Cosine similarity of embeddings
cosine_similarity = util.pytorch_cos_sim(embedding1, embedding2).item()
# Levenshtein distance (word order similarity)
word_order_similarity = 1 - (edit_distance(text1.split(), text2.split()) / max(len(text1.split()), len(text2.split())))
# Combine similarity scores
alpha = 0.7 # Weighting factor
combined_similarity = (alpha * cosine_similarity) + ((1 - alpha) * word_order_similarity)
return combined_similarity, word_order_similarity, cosine_similarity
# Function to map similarity score to grade
def get_grade(similarity_score):
if similarity_score >= 1:
return 5
elif similarity_score >= 0.9:
return 4
elif similarity_score >= 0.8:
return 3
elif similarity_score >= 0.75:
return 2
else:
return 1
# Evaluate answer based on similarity with the model answer
def evaluate_answer(student_answer):
model_answer = "Photosynthesis is the process plants use to make their own food using sunlight. They take in carbon dioxide from the air and water from the soil. Using sunlight, they convert these into glucose (a type of sugar that gives them energy) and oxygen, which they release back into the air."
similarity_score, ws, cs = calculate_similarity(student_answer, model_answer)
grade = get_grade(similarity_score)
feedback = generate_feedback(student_answer, model_answer)
return grade, similarity_score * 100, feedback, ws, cs
# Function to generate feedback
def generate_feedback(student_answer, model_answer):
feedback = []
if student_answer.lower() not in model_answer.lower():
feedback.append("The answer is not closely aligned with the model answer.")
return " ".join(feedback) if feedback else "Answer is well aligned with the model."
# Gradio interface for interaction
async def gradio_interface(image, languages: List[str], prompt="", history=[]):
student_answer = extract_text_from_image(image)
grade, similarity_score, feedback, ws, cs = evaluate_answer(student_answer)
# Generate response using Groq chat
response = ""
async for result in chat_groq(prompt, history):
response = result
return grade, similarity_score, feedback, response
# Define Gradio interface
interface = gr.Interface(
fn=gradio_interface,
inputs=[
gr.Image(type="filepath", label="Input"),
gr.CheckboxGroup(['eng', 'fra', 'spa'], type="value", value=['eng'], label='Language'),
gr.Textbox(lines=2, placeholder="Enter your prompt here", label="Prompt")
],
outputs=[
gr.Text(label="Grade"),
gr.Number(label="Similarity Score (%)"),
gr.Text(label="Feedback"),
gr.Text(label="Generated Response")
],
title="Automated Grading System",
description="Upload an image of your answer sheet to get a grade from 1 to 5, similarity score, and feedback based on the model answer.",
live=True
)
if __name__ == "__main__":
interface.launch()
|