markowitz / app.py
GarGerry's picture
Update app.py
7fb7f14 verified
raw
history blame
4.16 kB
import streamlit as st
import yfinance as yf
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import scipy.optimize as sco
# Fungsi untuk mengunduh data saham
def get_stock_data(tickers, start, end):
data = yf.download(tickers, start=start, end=end)
if data.empty:
st.error("Data saham tidak ditemukan. Periksa ticker atau rentang tanggal.")
return None
# Gunakan 'Adj Close' jika ada, jika tidak pakai 'Close'
if 'Adj Close' in data.columns:
return data['Adj Close']
elif 'Close' in data.columns:
st.warning("Menggunakan 'Close' karena 'Adj Close' tidak tersedia.")
return data['Close']
else:
st.error("Data harga penutupan tidak ditemukan.")
return None
# Fungsi untuk menghitung return tahunan dan matriks kovarians
def calculate_returns(data):
log_returns = np.log(data / data.shift(1))
return log_returns.mean() * 252, log_returns.cov() * 252
# Fungsi untuk menghitung portofolio optimal
def optimize_portfolio(returns, cov_matrix):
num_assets = len(returns)
def sharpe_ratio(weights):
portfolio_return = np.dot(weights, returns)
portfolio_volatility = np.sqrt(np.dot(weights.T, np.dot(cov_matrix, weights)))
return -portfolio_return / portfolio_volatility # Negatif untuk minimisasi
constraints = ({'type': 'eq', 'fun': lambda x: np.sum(x) - 1})
bounds = tuple((0, 1) for _ in range(num_assets))
init_guess = num_assets * [1. / num_assets]
result = sco.minimize(sharpe_ratio, init_guess, method='SLSQP', bounds=bounds, constraints=constraints)
return result.x if result.success else None
# Fungsi untuk mensimulasikan portofolio acak
def generate_efficient_frontier(returns, cov_matrix, num_portfolios=5000):
num_assets = len(returns)
results = np.zeros((3, num_portfolios))
for i in range(num_portfolios):
weights = np.random.dirichlet(np.ones(num_assets), size=1)[0]
portfolio_return = np.dot(weights, returns)
portfolio_volatility = np.sqrt(np.dot(weights.T, np.dot(cov_matrix, weights)))
sharpe_ratio = portfolio_return / portfolio_volatility
results[0, i] = portfolio_return
results[1, i] = portfolio_volatility
results[2, i] = sharpe_ratio
return results
# Streamlit UI
st.title("Analisis Portofolio Saham Optimal (Model Markowitz)")
# Input Saham & Tanggal
tickers_list = st.text_input("Masukkan ticker saham (contoh: BBCA.JK, TLKM.JK, BBRI.JK)", "BBCA.JK, TLKM.JK, BBRI.JK").split(", ")
start_date = st.date_input("Pilih tanggal mulai", pd.to_datetime("2020-01-01"))
end_date = st.date_input("Pilih tanggal akhir", pd.to_datetime("2023-12-31"))
if st.button("Analisis Portofolio"):
try:
# Ambil data saham
stock_data = get_stock_data(tickers_list, start_date, end_date)
if stock_data is not None:
st.write("Saham dengan data tersedia:", stock_data.columns) # Debugging
mean_returns, cov_matrix = calculate_returns(stock_data)
# Optimasi portofolio
optimal_weights = optimize_portfolio(mean_returns, cov_matrix)
if optimal_weights is not None:
st.subheader("Bobot Portofolio Optimal:")
for i, stock in enumerate(stock_data.columns):
st.write(f"{stock}: {optimal_weights[i]:.2%}")
# Simulasi Efficient Frontier
results = generate_efficient_frontier(mean_returns, cov_matrix)
st.subheader("Efficient Frontier")
fig, ax = plt.subplots()
scatter = ax.scatter(results[1, :], results[0, :], c=results[2, :], cmap="viridis", marker='o')
ax.set_xlabel("Risiko (Standar Deviasi)")
ax.set_ylabel("Return Tahunan")
ax.set_title("Efficient Frontier")
fig.colorbar(scatter, label="Sharpe Ratio")
st.pyplot(fig)
else:
st.error("Optimasi portofolio gagal. Coba dengan saham yang berbeda.")
except Exception as e:
st.error(f"Terjadi kesalahan: {e}")