File size: 4,160 Bytes
23e99b2
c561271
2a180f0
 
23e99b2
2a180f0
1c7d42a
f0a10e4
6811b7e
35ba371
7fb7f14
f0a10e4
 
 
ad0953c
2fe148a
 
 
 
 
 
 
 
35ba371
7fb7f14
f0a10e4
2a180f0
 
 
c561271
f0a10e4
2a180f0
 
f0a10e4
2a180f0
 
 
f0a10e4
c561271
35ba371
 
 
f0a10e4
2a180f0
f0a10e4
1c7d42a
7fb7f14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0a10e4
2a180f0
c561271
f0a10e4
2a180f0
6811b7e
7fb7f14
1c7d42a
2a180f0
 
f0a10e4
2a180f0
f0a10e4
 
7fb7f14
 
2a180f0
f0a10e4
 
2a180f0
f0a10e4
 
 
7fb7f14
f0a10e4
 
7fb7f14
 
 
f0a10e4
 
7fb7f14
f0a10e4
 
 
7fb7f14
f0a10e4
 
 
 
2a180f0
f0a10e4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import streamlit as st
import yfinance as yf
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import scipy.optimize as sco

# Fungsi untuk mengunduh data saham
def get_stock_data(tickers, start, end):
    data = yf.download(tickers, start=start, end=end)
    
    if data.empty:
        st.error("Data saham tidak ditemukan. Periksa ticker atau rentang tanggal.")
        return None

    # Gunakan 'Adj Close' jika ada, jika tidak pakai 'Close'
    if 'Adj Close' in data.columns:
        return data['Adj Close']
    elif 'Close' in data.columns:
        st.warning("Menggunakan 'Close' karena 'Adj Close' tidak tersedia.")
        return data['Close']
    else:
        st.error("Data harga penutupan tidak ditemukan.")
        return None

# Fungsi untuk menghitung return tahunan dan matriks kovarians
def calculate_returns(data):
    log_returns = np.log(data / data.shift(1))
    return log_returns.mean() * 252, log_returns.cov() * 252

# Fungsi untuk menghitung portofolio optimal
def optimize_portfolio(returns, cov_matrix):
    num_assets = len(returns)

    def sharpe_ratio(weights):
        portfolio_return = np.dot(weights, returns)
        portfolio_volatility = np.sqrt(np.dot(weights.T, np.dot(cov_matrix, weights)))
        return -portfolio_return / portfolio_volatility  # Negatif untuk minimisasi

    constraints = ({'type': 'eq', 'fun': lambda x: np.sum(x) - 1})
    bounds = tuple((0, 1) for _ in range(num_assets))
    init_guess = num_assets * [1. / num_assets]

    result = sco.minimize(sharpe_ratio, init_guess, method='SLSQP', bounds=bounds, constraints=constraints)
    return result.x if result.success else None

# Fungsi untuk mensimulasikan portofolio acak
def generate_efficient_frontier(returns, cov_matrix, num_portfolios=5000):
    num_assets = len(returns)
    results = np.zeros((3, num_portfolios))

    for i in range(num_portfolios):
        weights = np.random.dirichlet(np.ones(num_assets), size=1)[0]
        portfolio_return = np.dot(weights, returns)
        portfolio_volatility = np.sqrt(np.dot(weights.T, np.dot(cov_matrix, weights)))
        sharpe_ratio = portfolio_return / portfolio_volatility

        results[0, i] = portfolio_return
        results[1, i] = portfolio_volatility
        results[2, i] = sharpe_ratio

    return results

# Streamlit UI
st.title("Analisis Portofolio Saham Optimal (Model Markowitz)")

# Input Saham & Tanggal
tickers_list = st.text_input("Masukkan ticker saham (contoh: BBCA.JK, TLKM.JK, BBRI.JK)", "BBCA.JK, TLKM.JK, BBRI.JK").split(", ")
start_date = st.date_input("Pilih tanggal mulai", pd.to_datetime("2020-01-01"))
end_date = st.date_input("Pilih tanggal akhir", pd.to_datetime("2023-12-31"))

if st.button("Analisis Portofolio"):
    try:
        # Ambil data saham
        stock_data = get_stock_data(tickers_list, start_date, end_date)

        if stock_data is not None:
            st.write("Saham dengan data tersedia:", stock_data.columns)  # Debugging
            
            mean_returns, cov_matrix = calculate_returns(stock_data)

            # Optimasi portofolio
            optimal_weights = optimize_portfolio(mean_returns, cov_matrix)

            if optimal_weights is not None:
                st.subheader("Bobot Portofolio Optimal:")
                for i, stock in enumerate(stock_data.columns):
                    st.write(f"{stock}: {optimal_weights[i]:.2%}")

                # Simulasi Efficient Frontier
                results = generate_efficient_frontier(mean_returns, cov_matrix)

                st.subheader("Efficient Frontier")
                fig, ax = plt.subplots()
                scatter = ax.scatter(results[1, :], results[0, :], c=results[2, :], cmap="viridis", marker='o')
                ax.set_xlabel("Risiko (Standar Deviasi)")
                ax.set_ylabel("Return Tahunan")
                ax.set_title("Efficient Frontier")
                fig.colorbar(scatter, label="Sharpe Ratio")
                st.pyplot(fig)
            else:
                st.error("Optimasi portofolio gagal. Coba dengan saham yang berbeda.")

    except Exception as e:
        st.error(f"Terjadi kesalahan: {e}")