Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -10,8 +10,15 @@ config = DetrConfig.from_pretrained("facebook/detr-resnet-50")
|
|
10 |
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50", config=config)
|
11 |
image_processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
|
12 |
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
def draw_detections(image, detections):
|
17 |
# Convert PIL image to a numpy array
|
@@ -32,19 +39,19 @@ def draw_detections(image, detections):
|
|
32 |
# Draw rectangles and text with a larger font
|
33 |
cv2.rectangle(np_image, (x_min, y_min), (x_max, y_max), (0, 255, 0), 2)
|
34 |
label_text = f'{label} {score:.2f}'
|
35 |
-
|
36 |
-
cv2.putText(np_image, label_text, (x_min, y_min - 10), cv2.FONT_HERSHEY_SIMPLEX, 1.5, (255, 255, 255), 4)
|
37 |
|
38 |
# Convert BGR to RGB for displaying
|
39 |
final_image = cv2.cvtColor(np_image, cv2.COLOR_BGR2RGB)
|
40 |
final_pil_image = Image.fromarray(final_image)
|
41 |
return final_pil_image
|
42 |
|
43 |
-
def get_pipeline_prediction(pil_image):
|
|
|
|
|
|
|
44 |
try:
|
45 |
-
|
46 |
-
if isinstance(pil_image, np.ndarray):
|
47 |
-
pil_image = Image.fromarray(pil_image.astype('uint8'), 'RGB')
|
48 |
pipeline_output = od_pipe(pil_image)
|
49 |
processed_image = draw_detections(pil_image, pipeline_output)
|
50 |
return processed_image, pipeline_output
|
@@ -57,13 +64,14 @@ with gr.Blocks() as demo:
|
|
57 |
with gr.Row():
|
58 |
with gr.Column():
|
59 |
inp_image = gr.Image(label="Input image")
|
|
|
|
|
60 |
btn_run = gr.Button('Run Detection')
|
61 |
with gr.Column():
|
62 |
with gr.Tab("Annotated Image"):
|
63 |
out_image = gr.Image()
|
64 |
with gr.Tab("Detection Results"):
|
65 |
out_json = gr.JSON()
|
66 |
-
|
67 |
-
btn_run.click(get_pipeline_prediction, inputs=inp_image, outputs=[out_image, out_json])
|
68 |
|
69 |
demo.launch()
|
|
|
10 |
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50", config=config)
|
11 |
image_processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
|
12 |
|
13 |
+
def load_model(threshold):
|
14 |
+
# Since changing threshold at runtime for models isn't typically supported directly by the transformers pipeline,
|
15 |
+
# we reinitialize the model with the desired configuration when needed.
|
16 |
+
config = DetrConfig.from_pretrained("facebook/detr-resnet-50", num_labels=91, threshold=threshold)
|
17 |
+
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50", config=config)
|
18 |
+
image_processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
|
19 |
+
return pipeline(task='object-detection', model=model, image_processor=image_processor)
|
20 |
+
|
21 |
+
od_pipe = load_model(0.5) # Default threshold
|
22 |
|
23 |
def draw_detections(image, detections):
|
24 |
# Convert PIL image to a numpy array
|
|
|
39 |
# Draw rectangles and text with a larger font
|
40 |
cv2.rectangle(np_image, (x_min, y_min), (x_max, y_max), (0, 255, 0), 2)
|
41 |
label_text = f'{label} {score:.2f}'
|
42 |
+
cv2.putText(np_image, label_text, (x_min, y_min - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (255, 255, 255), 2)
|
|
|
43 |
|
44 |
# Convert BGR to RGB for displaying
|
45 |
final_image = cv2.cvtColor(np_image, cv2.COLOR_BGR2RGB)
|
46 |
final_pil_image = Image.fromarray(final_image)
|
47 |
return final_pil_image
|
48 |
|
49 |
+
def get_pipeline_prediction(threshold, pil_image):
|
50 |
+
global od_pipe
|
51 |
+
if od_pipe.config.threshold != threshold:
|
52 |
+
od_pipe = load_model(threshold)
|
53 |
try:
|
54 |
+
pil_image = Image.fromarray(np.array(pil_image))
|
|
|
|
|
55 |
pipeline_output = od_pipe(pil_image)
|
56 |
processed_image = draw_detections(pil_image, pipeline_output)
|
57 |
return processed_image, pipeline_output
|
|
|
64 |
with gr.Row():
|
65 |
with gr.Column():
|
66 |
inp_image = gr.Image(label="Input image")
|
67 |
+
slider = gr.Slider(minimum=0, maximum=1, step=0.05, label="Adjust Detection Sensitivity", value=0.5)
|
68 |
+
gr.Markdown("Adjust the slider to change the detection sensitivity.")
|
69 |
btn_run = gr.Button('Run Detection')
|
70 |
with gr.Column():
|
71 |
with gr.Tab("Annotated Image"):
|
72 |
out_image = gr.Image()
|
73 |
with gr.Tab("Detection Results"):
|
74 |
out_json = gr.JSON()
|
75 |
+
btn_run.click(get_pipeline_prediction, inputs=[slider, inp_image], outputs=[out_image, out_json])
|
|
|
76 |
|
77 |
demo.launch()
|