Gabolozano commited on
Commit
4ce9fc8
·
verified ·
1 Parent(s): bea1e6b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -7
app.py CHANGED
@@ -10,8 +10,8 @@ config = DetrConfig.from_pretrained("facebook/detr-resnet-50")
10
  model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50", config=config)
11
  image_processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
12
 
13
- # Initialize the pipeline
14
- od_pipe = pipeline(task='object-detection', model=model, image_processor=image_processor)
15
 
16
  def draw_detections(image, detections):
17
  # Convert PIL image to a numpy array
@@ -32,7 +32,8 @@ def draw_detections(image, detections):
32
  # Draw rectangles and text with a larger font
33
  cv2.rectangle(np_image, (x_min, y_min), (x_max, y_max), (0, 255, 0), 2)
34
  label_text = f'{label} {score:.2f}'
35
- cv2.putText(np_image, label_text, (x_min, y_min - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (255, 255, 255), 2)
 
36
 
37
  # Convert BGR to RGB for displaying
38
  final_image = cv2.cvtColor(np_image, cv2.COLOR_BGR2RGB)
@@ -40,10 +41,10 @@ def draw_detections(image, detections):
40
  return final_pil_image
41
 
42
  def get_pipeline_prediction(pil_image):
43
- # Ensure the image is a PIL Image as expected by the model pipeline
44
- if not isinstance(pil_image, Image.Image):
45
- pil_image = Image.fromarray(pil_image.astype('uint8'), 'RGB')
46
  try:
 
 
 
47
  pipeline_output = od_pipe(pil_image)
48
  processed_image = draw_detections(pil_image, pipeline_output)
49
  return processed_image, pipeline_output
@@ -55,7 +56,7 @@ def get_pipeline_prediction(pil_image):
55
  with gr.Blocks() as demo:
56
  with gr.Row():
57
  with gr.Column():
58
- inp_image = gr.Image(label="Input image", type="pil") # Ensure the input is loaded as a PIL Image
59
  btn_run = gr.Button('Run Detection')
60
  with gr.Column():
61
  with gr.Tab("Annotated Image"):
 
10
  model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50", config=config)
11
  image_processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
12
 
13
+ # Initialize the pipeline, adjust the confidence_threshold if possible
14
+ od_pipe = pipeline(task='object-detection', model=model, image_processor=image_processor, confidence_threshold=0.5)
15
 
16
  def draw_detections(image, detections):
17
  # Convert PIL image to a numpy array
 
32
  # Draw rectangles and text with a larger font
33
  cv2.rectangle(np_image, (x_min, y_min), (x_max, y_max), (0, 255, 0), 2)
34
  label_text = f'{label} {score:.2f}'
35
+ # Increase the font size and text thickness
36
+ cv2.putText(np_image, label_text, (x_min, y_min - 10), cv2.FONT_HERSHEY_SIMPLEX, 1.5, (255, 255, 255), 4)
37
 
38
  # Convert BGR to RGB for displaying
39
  final_image = cv2.cvtColor(np_image, cv2.COLOR_BGR2RGB)
 
41
  return final_pil_image
42
 
43
  def get_pipeline_prediction(pil_image):
 
 
 
44
  try:
45
+ # Ensure PIL image is passed correctly
46
+ if isinstance(pil_image, np.ndarray):
47
+ pil_image = Image.fromarray(pil_image.astype('uint8'), 'RGB')
48
  pipeline_output = od_pipe(pil_image)
49
  processed_image = draw_detections(pil_image, pipeline_output)
50
  return processed_image, pipeline_output
 
56
  with gr.Blocks() as demo:
57
  with gr.Row():
58
  with gr.Column():
59
+ inp_image = gr.Image(label="Input image")
60
  btn_run = gr.Button('Run Detection')
61
  with gr.Column():
62
  with gr.Tab("Annotated Image"):