Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -10,8 +10,8 @@ config = DetrConfig.from_pretrained("facebook/detr-resnet-50")
|
|
10 |
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50", config=config)
|
11 |
image_processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
|
12 |
|
13 |
-
# Initialize the pipeline
|
14 |
-
od_pipe = pipeline(task='object-detection', model=model, image_processor=image_processor)
|
15 |
|
16 |
def draw_detections(image, detections):
|
17 |
# Convert PIL image to a numpy array
|
@@ -32,7 +32,8 @@ def draw_detections(image, detections):
|
|
32 |
# Draw rectangles and text with a larger font
|
33 |
cv2.rectangle(np_image, (x_min, y_min), (x_max, y_max), (0, 255, 0), 2)
|
34 |
label_text = f'{label} {score:.2f}'
|
35 |
-
|
|
|
36 |
|
37 |
# Convert BGR to RGB for displaying
|
38 |
final_image = cv2.cvtColor(np_image, cv2.COLOR_BGR2RGB)
|
@@ -40,10 +41,10 @@ def draw_detections(image, detections):
|
|
40 |
return final_pil_image
|
41 |
|
42 |
def get_pipeline_prediction(pil_image):
|
43 |
-
# Ensure the image is a PIL Image as expected by the model pipeline
|
44 |
-
if not isinstance(pil_image, Image.Image):
|
45 |
-
pil_image = Image.fromarray(pil_image.astype('uint8'), 'RGB')
|
46 |
try:
|
|
|
|
|
|
|
47 |
pipeline_output = od_pipe(pil_image)
|
48 |
processed_image = draw_detections(pil_image, pipeline_output)
|
49 |
return processed_image, pipeline_output
|
@@ -55,7 +56,7 @@ def get_pipeline_prediction(pil_image):
|
|
55 |
with gr.Blocks() as demo:
|
56 |
with gr.Row():
|
57 |
with gr.Column():
|
58 |
-
inp_image = gr.Image(label="Input image"
|
59 |
btn_run = gr.Button('Run Detection')
|
60 |
with gr.Column():
|
61 |
with gr.Tab("Annotated Image"):
|
|
|
10 |
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50", config=config)
|
11 |
image_processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
|
12 |
|
13 |
+
# Initialize the pipeline, adjust the confidence_threshold if possible
|
14 |
+
od_pipe = pipeline(task='object-detection', model=model, image_processor=image_processor, confidence_threshold=0.5)
|
15 |
|
16 |
def draw_detections(image, detections):
|
17 |
# Convert PIL image to a numpy array
|
|
|
32 |
# Draw rectangles and text with a larger font
|
33 |
cv2.rectangle(np_image, (x_min, y_min), (x_max, y_max), (0, 255, 0), 2)
|
34 |
label_text = f'{label} {score:.2f}'
|
35 |
+
# Increase the font size and text thickness
|
36 |
+
cv2.putText(np_image, label_text, (x_min, y_min - 10), cv2.FONT_HERSHEY_SIMPLEX, 1.5, (255, 255, 255), 4)
|
37 |
|
38 |
# Convert BGR to RGB for displaying
|
39 |
final_image = cv2.cvtColor(np_image, cv2.COLOR_BGR2RGB)
|
|
|
41 |
return final_pil_image
|
42 |
|
43 |
def get_pipeline_prediction(pil_image):
|
|
|
|
|
|
|
44 |
try:
|
45 |
+
# Ensure PIL image is passed correctly
|
46 |
+
if isinstance(pil_image, np.ndarray):
|
47 |
+
pil_image = Image.fromarray(pil_image.astype('uint8'), 'RGB')
|
48 |
pipeline_output = od_pipe(pil_image)
|
49 |
processed_image = draw_detections(pil_image, pipeline_output)
|
50 |
return processed_image, pipeline_output
|
|
|
56 |
with gr.Blocks() as demo:
|
57 |
with gr.Row():
|
58 |
with gr.Column():
|
59 |
+
inp_image = gr.Image(label="Input image")
|
60 |
btn_run = gr.Button('Run Detection')
|
61 |
with gr.Column():
|
62 |
with gr.Tab("Annotated Image"):
|