Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
from transformers import pipeline, DetrForObjectDetection, DetrConfig, DetrImageProcessor | |
import numpy as np | |
import cv2 | |
from PIL import Image | |
# Initialize the model | |
config = DetrConfig.from_pretrained("facebook/detr-resnet-50") | |
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50", config=config) | |
image_processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50") | |
def load_model(threshold): | |
# Reinitialize the model with the desired detection threshold | |
config = DetrConfig.from_pretrained("facebook/detr-resnet-50", threshold=threshold) | |
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50", config=config) | |
image_processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50") | |
return pipeline(task='object-detection', model=model, image_processor=image_processor) | |
od_pipe = load_model(0.5) # Default threshold | |
def draw_detections(image, detections): | |
# Convert PIL image to a numpy array | |
np_image = np.array(image) | |
# Convert RGB to BGR for OpenCV | |
np_image = cv2.cvtColor(np_image, cv2.COLOR_RGB2BGR) | |
# Draw detections | |
for detection in detections: | |
score = detection['score'] | |
label = detection['label'] | |
box = detection['box'] | |
x_min = box['xmin'] | |
y_min = box['ymin'] | |
x_max = box['xmax'] | |
y_max = box['ymax'] | |
# Increase font size for better visibility | |
cv2.rectangle(np_image, (x_min, y_min), (x_max, y_max), (0, 255, 0), 2) | |
label_text = f'{label} {score:.2f}' | |
cv2.putText(np_image, label_text, (x_min, y_min - 10), cv2.FONT_HERSHEY_SIMPLEX, 1.5, (255, 255, 255), 4) | |
# Convert BGR to RGB for displaying | |
final_image = cv2.cvtColor(np_image, cv2.COLOR_BGR2RGB) | |
final_pil_image = Image.fromarray(final_image) | |
return final_pil_image | |
def get_pipeline_prediction(threshold, pil_image): | |
global od_pipe | |
try: | |
# Check if the model threshold needs adjusting | |
if od_pipe.config.threshold != threshold: | |
od_pipe = load_model(threshold) | |
print("Model reloaded with new threshold:", threshold) | |
# Ensure input is a PIL image | |
if not isinstance(pil_image, Image.Image): | |
pil_image = Image.fromarray(np.array(pil_image).astype('uint8'), 'RGB') | |
# Run detection and return annotated image and results | |
pipeline_output = od_pipe(pil_image) | |
processed_image = draw_detections(pil_image, pipeline_output) | |
return processed_image, pipeline_output | |
except Exception as e: | |
error_message = f"An error occurred: {str(e)}" | |
print(error_message) | |
return pil_image, {"error": error_message} | |
# Gradio interface | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(): | |
inp_image = gr.Image(label="Input image") | |
slider = gr.Slider(minimum=0, maximum=1, step=0.05, label="Detection Sensitivity", value=0.5) | |
gr.Markdown("Adjust the slider to change detection sensitivity.") | |
btn_run = gr.Button('Run Detection') | |
with gr.Column(): | |
with gr.Tab("Annotated Image"): | |
out_image = gr.Image() | |
with gr.Tab("Detection Results"): | |
out_json = gr.JSON() | |
btn_run.click(get_pipeline_prediction, inputs=[slider, inp_image], outputs=[out_image, out_json]) | |
demo.launch() |