import os import gradio as gr from transformers import pipeline, DetrForObjectDetection, DetrConfig, DetrImageProcessor import numpy as np import cv2 from PIL import Image # Initialize the model config = DetrConfig.from_pretrained("facebook/detr-resnet-50") model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50", config=config) image_processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50") def load_model(threshold): # Reinitialize the model with the desired detection threshold config = DetrConfig.from_pretrained("facebook/detr-resnet-50", threshold=threshold) model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50", config=config) image_processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50") return pipeline(task='object-detection', model=model, image_processor=image_processor) od_pipe = load_model(0.5) # Default threshold def draw_detections(image, detections): # Convert PIL image to a numpy array np_image = np.array(image) # Convert RGB to BGR for OpenCV np_image = cv2.cvtColor(np_image, cv2.COLOR_RGB2BGR) # Draw detections for detection in detections: score = detection['score'] label = detection['label'] box = detection['box'] x_min = box['xmin'] y_min = box['ymin'] x_max = box['xmax'] y_max = box['ymax'] # Increase font size for better visibility cv2.rectangle(np_image, (x_min, y_min), (x_max, y_max), (0, 255, 0), 2) label_text = f'{label} {score:.2f}' cv2.putText(np_image, label_text, (x_min, y_min - 10), cv2.FONT_HERSHEY_SIMPLEX, 1.5, (255, 255, 255), 4) # Convert BGR to RGB for displaying final_image = cv2.cvtColor(np_image, cv2.COLOR_BGR2RGB) final_pil_image = Image.fromarray(final_image) return final_pil_image def get_pipeline_prediction(threshold, pil_image): global od_pipe try: # Check if the model threshold needs adjusting if od_pipe.config.threshold != threshold: od_pipe = load_model(threshold) print("Model reloaded with new threshold:", threshold) # Ensure input is a PIL image if not isinstance(pil_image, Image.Image): pil_image = Image.fromarray(np.array(pil_image).astype('uint8'), 'RGB') # Run detection and return annotated image and results pipeline_output = od_pipe(pil_image) processed_image = draw_detections(pil_image, pipeline_output) return processed_image, pipeline_output except Exception as e: error_message = f"An error occurred: {str(e)}" print(error_message) return pil_image, {"error": error_message} # Gradio interface with gr.Blocks() as demo: with gr.Row(): with gr.Column(): inp_image = gr.Image(label="Input image") slider = gr.Slider(minimum=0, maximum=1, step=0.05, label="Detection Sensitivity", value=0.5) gr.Markdown("Adjust the slider to change detection sensitivity.") btn_run = gr.Button('Run Detection') with gr.Column(): with gr.Tab("Annotated Image"): out_image = gr.Image() with gr.Tab("Detection Results"): out_json = gr.JSON() btn_run.click(get_pipeline_prediction, inputs=[slider, inp_image], outputs=[out_image, out_json]) demo.launch()