Spaces:
Sleeping
Sleeping
| import os | |
| import gradio as gr | |
| from transformers import pipeline, DetrForObjectDetection, DetrConfig, DetrImageProcessor | |
| import numpy as np | |
| import cv2 | |
| from PIL import Image | |
| def draw_detections(image, detections): | |
| # Convert PIL image to a numpy array | |
| np_image = np.array(image) | |
| # Convert RGB to BGR for OpenCV | |
| np_image = cv2.cvtColor(np_image, cv2.COLOR_RGB2BGR) | |
| for detection in detections: | |
| # Each detection includes ['score', 'label', 'box'] | |
| score = detection['score'] | |
| label = detection['label'] | |
| box = detection['box'] | |
| x_min, y_min, x_max, y_max = map(int, box) | |
| cv2.rectangle(np_image, (x_min, y_min), (x_max, y_max), (0, 255, 0), 2) | |
| cv2.putText(np_image, f'{label} {score:.2f}', (x_min, max(y_min - 10, 0)), | |
| cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 1) | |
| # Convert BGR to RGB for displaying | |
| final_image = cv2.cvtColor(np_image, cv2.COLOR_BGR2RGB) | |
| # Convert the numpy array to PIL Image | |
| final_pil_image = Image.fromarray(final_image) | |
| return final_pil_image | |
| # Initialize objects from transformers | |
| config = DetrConfig.from_pretrained("facebook/detr-resnet-50") | |
| model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50", config=config) | |
| image_processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50") | |
| od_pipe = pipeline(task='object-detection', model=model, image_processor=image_processor) | |
| def get_pipeline_prediction(pil_image): | |
| try: | |
| # Run the object detection pipeline | |
| pipeline_output = od_pipe(pil_image) | |
| # Draw the detection results on the image | |
| processed_image = draw_detections(pil_image, pipeline_output) | |
| # Provide both the image and the JSON detection results | |
| return processed_image, pipeline_output | |
| except Exception as e: | |
| # Log the error | |
| print(f"An error occurred: {str(e)}") | |
| # Return a message and an empty JSON | |
| return pil_image, {"error": str(e)} | |
| demo = gr.Interface( | |
| fn=get_pipeline_prediction, | |
| inputs=gr.Image(label="Input image", type="pil"), | |
| outputs=[ | |
| gr.Image(label="Annotated Image"), | |
| gr.JSON(label="Detected Objects") | |
| ] | |
| ) | |
| demo.launch() | |