Gabolozano's picture
Update app.py
cfd90f9 verified
raw
history blame
2.01 kB
import os
import gradio as gr
from transformers import pipeline, DetrForObjectDetection, DetrConfig, DetrImageProcessor
import numpy as np
import cv2
from PIL import Image
def draw_detections(image, detections):
# Convert PIL image to a numpy array
np_image = np.array(image)
# Convert RGB to BGR for OpenCV
np_image = cv2.cvtColor(np_image, cv2.COLOR_RGB2BGR)
for detection in detections:
# Extract scores, labels, and bounding boxes correctly
score = detection['score']
label = detection['label']
box = detection['box']
x_min = box['xmin']
y_min = box['ymin']
x_max = box['xmax']
y_max = box['ymax']
# Draw rectangles and text on the image
cv2.rectangle(np_image, (x_min, y_min), (x_max, y_max), (0, 255, 0), 2)
cv2.putText(np_image, f'{label} {score:.2f}', (x_min, max(y_min - 10, 0)),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2)
# Convert BGR to RGB for displaying
final_image = cv2.cvtColor(np_image, cv2.COLOR_BGR2RGB)
# Convert the numpy array to PIL Image
final_pil_image = Image.fromarray(final_image)
return final_pil_image
def get_pipeline_prediction(pil_image):
try:
# Run the object detection pipeline
pipeline_output = od_pipe(pil_image)
# Draw the detection results on the image
processed_image = draw_detections(pil_image, pipeline_output)
# Provide both the image and the JSON detection results
return processed_image, pipeline_output
except Exception as e:
# Log the error
print(f"An error occurred: {str(e)}")
# Return a message and an empty JSON
return pil_image, {"error": str(e)}
demo = gr.Interface(
fn=get_pipeline_prediction,
inputs=gr.Image(label="Input image", type="pil"),
outputs=[
gr.Image(label="Annotated Image"),
gr.JSON(label="Detected Objects")
]
)
demo.launch()