Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import re | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
def extract_top_keywords(text, top_n=5): | |
""" | |
Extract top_n keywords from 'text' using a simple TF-IDF approach. | |
Returns a list of strings (keywords). | |
""" | |
# (Optional) remove punctuation etc. so that TF-IDF doesn't see them as separate tokens | |
cleaned_text = re.sub(r"[^\w\s]", " ", text.lower()) | |
# Initialize TF-IDF with English stop words | |
vectorizer = TfidfVectorizer(stop_words='english', max_features=2000) | |
# TF-IDF expects an iterable of documents, so wrap text in a list | |
tfidf_matrix = vectorizer.fit_transform([cleaned_text]) | |
# Extract the feature names and the row (since there's only 1 doc, row=0) | |
feature_names = vectorizer.get_feature_names_out() | |
scores = tfidf_matrix.toarray()[0] | |
# Pair up (feature_name, score) | |
word_score_pairs = list(zip(feature_names, scores)) | |
# Sort by score descending | |
word_score_pairs.sort(key=lambda x: x[1], reverse=True) | |
# Return just the top_n words | |
top_keywords = [w for (w, s) in word_score_pairs[:top_n]] | |
return top_keywords | |