Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 1,147 Bytes
06bd223 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
import re
from sklearn.feature_extraction.text import TfidfVectorizer
def extract_top_keywords(text, top_n=5):
"""
Extract top_n keywords from 'text' using a simple TF-IDF approach.
Returns a list of strings (keywords).
"""
# (Optional) remove punctuation etc. so that TF-IDF doesn't see them as separate tokens
cleaned_text = re.sub(r"[^\w\s]", " ", text.lower())
# Initialize TF-IDF with English stop words
vectorizer = TfidfVectorizer(stop_words='english', max_features=2000)
# TF-IDF expects an iterable of documents, so wrap text in a list
tfidf_matrix = vectorizer.fit_transform([cleaned_text])
# Extract the feature names and the row (since there's only 1 doc, row=0)
feature_names = vectorizer.get_feature_names_out()
scores = tfidf_matrix.toarray()[0]
# Pair up (feature_name, score)
word_score_pairs = list(zip(feature_names, scores))
# Sort by score descending
word_score_pairs.sort(key=lambda x: x[1], reverse=True)
# Return just the top_n words
top_keywords = [w for (w, s) in word_score_pairs[:top_n]]
return top_keywords
|