File size: 10,287 Bytes
0130713
c2f0c5c
e44062d
5a1352d
 
c567921
88e2023
8225c93
cb359de
9d9ace2
53d69f4
 
50fbfdd
f5dac9b
0130713
 
 
d845358
 
e4b8dd5
88e2023
 
 
 
9392032
 
 
391fa92
9392032
391fa92
9392032
c567921
5a1352d
5170600
9392032
5a1352d
 
d845358
17d08d8
d845358
17d08d8
d845358
 
 
 
 
 
043c4b1
 
 
d845358
 
88e2023
043c4b1
 
 
 
 
 
 
17d08d8
d845358
043c4b1
17d08d8
88e2023
17d08d8
 
d845358
 
4ec0c95
d845358
 
077a149
d845358
53d69f4
 
 
 
 
 
 
 
 
d845358
 
 
 
17d08d8
7471ef6
3fe1fb4
d845358
 
 
 
 
 
 
5c71cde
d845358
 
 
077a149
 
d845358
 
5c71cde
077a149
17d08d8
5c71cde
d845358
077a149
d845358
 
 
077a149
d845358
 
 
 
 
4ec0c95
d845358
4ec0c95
 
8ad1360
 
d3da02b
 
 
3a0d69c
d3da02b
 
 
 
 
8225c93
 
 
 
 
 
8ad1360
077a149
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53d69f4
 
 
 
077a149
d845358
 
 
 
 
4ec0c95
d845358
4ec0c95
 
8ad1360
 
d3da02b
 
 
 
 
 
 
 
 
8225c93
 
 
 
 
 
 
077a149
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53d69f4
 
 
 
077a149
d845358
 
7471ef6
c567921
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import streamlit as st
import pandas as pd
from appStore.prep_data import process_giz_worldwide
from appStore.prep_utils import create_documents, get_client
from appStore.embed import hybrid_embed_chunks
from appStore.search import hybrid_search
from appStore.region_utils import load_region_data, get_country_name
from appStore.tfidf_extraction import extract_top_keywords 
from torch import cuda
import json
from datetime import datetime

# get the device to be used eithe gpu or cpu
device = 'cuda' if cuda.is_available() else 'cpu'


st.set_page_config(page_title="SEARCH IATI",layout='wide')
st.title("GIZ Project Database")
var = st.text_input("Enter Search Query")

# Load the region lookup CSV
region_lookup_path = "docStore/regions_lookup.csv"
region_df = load_region_data(region_lookup_path)

####################  Create the embeddings collection and save ######################
# the steps below need to be performed only once and then commented out any unnecssary compute over-run
##### First we process and create the chunks for relvant data source
#chunks = process_giz_worldwide()
##### Convert to langchain documents
#temp_doc = create_documents(chunks,'chunks')
##### Embed and store docs, check if collection exist then you need to update the collection
collection_name = "giz_worldwide"
#hybrid_embed_chunks(docs= temp_doc, collection_name = collection_name)

################### Hybrid Search ######################################################
client = get_client()
print(client.get_collections())

# Fetch unique country codes and map to country names
@st.cache_data
def get_country_name_mapping(_client, collection_name, region_df):
    results = hybrid_search(_client, "", collection_name)
    country_set = set()
    for res in results[0] + results[1]:
        countries = res.payload.get('metadata', {}).get('countries', "[]")
        try:
            country_list = json.loads(countries.replace("'", '"'))
            # ADD: only add codes of length 2
            two_digit_codes = [code.upper() for code in country_list if len(code) == 2]
            country_set.update(two_digit_codes)
        except json.JSONDecodeError:
            pass
    
    # Create a mapping of {CountryName -> ISO2Code} 
    # so you can display the name in the selectbox but store the 2-digit code
    country_name_to_code = {}
    for code in country_set:
        name = get_country_name(code, region_df)
        country_name_to_code[name] = code

    return country_name_to_code


# Get country name mapping
client = get_client()
country_name_mapping = get_country_name_mapping(client, collection_name, region_df)
unique_country_names = sorted(country_name_mapping.keys())  # List of country names

# Layout filters in columns
col1, col2, col3 = st.columns([1, 1, 4])

with col1:
    country_filter = st.selectbox("Country", ["All/Not allocated"] + unique_country_names)  # Display country names
with col2:
    current_year = datetime.now().year
    default_start_year = current_year - 5  # Default to 5 years ago
    
    end_year_range = st.slider(
        "Project End Year",
        min_value=2010,
        max_value=2030,
        value=(default_start_year, current_year)
    )

# Checkbox to control whether to show only exact matches
show_exact_matches = st.checkbox("Show only exact matches", value=False)

button = st.button("Search")
if button:
    results = hybrid_search(client, var, collection_name)

    def filter_results(results, country_filter, end_year_range):
        filtered = []
        for res in results:
            metadata = res.payload.get('metadata', {})
            countries = metadata.get('countries', "[]")
            end_year = float(metadata.get('end_year', 0))
    
            # Process countries string to a list
            try:
                country_list = json.loads(countries.replace("'", '"'))
                # Normalize to uppercase and filter only 2-digit ISO codes
                country_list = [code.upper() for code in country_list if len(code) == 2]
            except json.JSONDecodeError:
                country_list = []
    
            # Translate selected country name back to 2-digit ISO code
            selected_iso_code = country_name_mapping.get(country_filter, None)
    
            # Apply country and year filters
            if (country_filter == "All/Not allocated" or selected_iso_code in country_list) and (end_year_range[0] <= end_year <= end_year_range[1]):
                filtered.append(res)
        return filtered


    # Check user preference for exact matches
    if show_exact_matches:
        st.write(f"Showing **Top 10 Lexical Search results** for query: {var}")
        lexical_results = results[1]  # Lexical results are in index 1
        filtered_lexical_results = filter_results(lexical_results, country_filter, end_year_range)
        for res in filtered_lexical_results[:10]:
            project_name = res.payload['metadata'].get('project_name', 'Project Link')
            url = res.payload['metadata'].get('url', '#')
            st.markdown(f"#### [{project_name}]({url})")
            # ------- Display first 4 lines + expander -------
            full_text = res.payload['page_content']
            # Split the text by whitespace
            words = full_text.split()
            # For instance, show only the first 40 words
            preview_word_count = 120
            # Create the short preview and the remainder
            preview_text = " ".join(words[:preview_word_count])
            remainder_text = " ".join(words[preview_word_count:])
            # Always display the preview_text
            st.write(preview_text + ("..." if remainder_text else ""))
            # ------ Extract top 5 keywords and display ------
            top_keywords = extract_top_keywords(full_text, top_n=5)
            # Join them with " 路 " and make them italic
            if top_keywords:
                st.write("")
                st.markdown(f"_{' 路 '.join(top_keywords)}_")  # e.g. _keyword1 路 keyword2 路 keyword3_
            # ------- Additional info below the text -------
            metadata = res.payload.get('metadata', {})
            countries = metadata.get('countries', "[]")
            client = metadata.get('client', 'Unknown Client')
            start_year = metadata.get('start_year', None)
            end_year = metadata.get('end_year', None)

            # Process countries
            try:
                country_list = json.loads(countries.replace("'", '"'))
                # Normalize to uppercase and map to country names
                country_names = [get_country_name(code.upper(), region_df) for code in country_list if len(code) == 2]
                country_names = country_names if country_names else country_list  # Fallback if no names found
            except json.JSONDecodeError:
                country_names = countries

            # Format start and end year
            start_year = f"{int(round(float(start_year)))}" if start_year else "Unknown"
            end_year = f"{int(round(float(end_year)))}" if end_year else "Unknown"

            # Generate additional text with Markdown for bold formatting
            additional_text = f"**{', '.join(country_names)}**, commissioned by **{client}**, **{start_year}-{end_year}**"
            st.markdown(additional_text)


            st.divider()
    else:
        st.write(f"Showing **Top 10 Semantic Search results** for query: {var}")
        semantic_results = results[0]  # Semantic results are in index 0
        filtered_semantic_results = filter_results(semantic_results, country_filter, end_year_range)
        for res in filtered_semantic_results[:10]:
            project_name = res.payload['metadata'].get('project_name', 'Project Link')
            url = res.payload['metadata'].get('url', '#')
            st.markdown(f"#### [{project_name}]({url})")
            # ------- Display first 4 lines + expander -------
            full_text = res.payload['page_content']
            # Split the text by whitespace
            words = full_text.split()
            # For instance, show only the first 40 words
            preview_word_count = 40
            # Create the short preview and the remainder
            preview_text = " ".join(words[:preview_word_count])
            remainder_text = " ".join(words[preview_word_count:])
            # Always display the preview_text
            st.write(preview_text + ("..." if remainder_text else ""))
            # ------ Extract top 5 keywords and display ------
            top_keywords = extract_top_keywords(full_text, top_n=5)
            # Join them with " 路 " and make them italic
            if top_keywords:
                st.write("")  # line break
                st.markdown(f"_{' 路 '.join(top_keywords)}_")
            
            # Additional text below the content
            metadata = res.payload.get('metadata', {})
            countries = metadata.get('countries', "[]")
            client = metadata.get('client', 'Unknown Client')
            start_year = metadata.get('start_year', None)
            end_year = metadata.get('end_year', None)

            # Process countries
            try:
                country_list = json.loads(countries.replace("'", '"'))
                country_names = [get_country_name(code.upper(), region_df) for code in country_list if len(code) == 2]
                country_names = country_names if country_names else country_list
            except json.JSONDecodeError:
                country_names = countries

            # Format start and end year
            start_year = f"{int(round(float(start_year)))}" if start_year else "Unknown"
            end_year = f"{int(round(float(end_year)))}" if end_year else "Unknown"

            # Generate additional text with Markdown for bold formatting
            additional_text = f"**{', '.join(country_names)}**, commissioned by **{client}**, **{start_year}-{end_year}**"
            st.markdown(additional_text)


            st.divider()


    #  for i in results: 
    #      st.subheader(str(i.metadata['id'])+":"+str(i.metadata['title_main']))
    #      st.caption(f"Status:{str(i.metadata['status'])}, Country:{str(i.metadata['country_name'])}")
    #      st.write(i.page_content)
    #      st.divider()