Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 2,631 Bytes
1c8984d 5170600 3e5d223 0e3ab7a 1c8984d 5170600 af8bf50 5170600 1c8984d 5170600 1c8984d 5170600 1c8984d af8bf50 1c8984d 5170600 1c8984d 5323bc1 b095384 5323bc1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
from langchain_qdrant import QdrantVectorStore
from langchain_qdrant import FastEmbedSparse, RetrievalMode
from torch import cuda
import streamlit as st
from langchain_huggingface import HuggingFaceEmbeddings
from appStore.prep_utils import get_client
# get the device to be used eithe gpu or cpu
device = 'cuda' if cuda.is_available() else 'cpu'
def hybrid_embed_chunks(docs, collection_name, del_if_exists = False):
"""
takes the chunks and does the hybrid embedding for the list of chunks
"""
# Dense Embeddings function
embeddings = HuggingFaceEmbeddings(
model_kwargs = {'device': device},
encode_kwargs = {'normalize_embeddings': True},
model_name='BAAI/bge-m3'
)
# Sparse Embedding Function
sparse_embeddings = FastEmbedSparse(model_name="Qdrant/bm25")
# get exisitng client
client = get_client()
# create collection
if del_if_exists:
client.delete_collection(collection_name=f"{collection_name}")
client.create_collection(
collection_name=collection_name,
vectors_config={
"text-dense": models.VectorParams(size=1024, distance=models.Distance.COSINE, on_disk = True)
},
sparse_vectors_config={
"text-sparse": models.SparseVectorParams(index=models.SparseIndexParams(
on_disk=True,
)
)
},)
# create Vector store
vector_store = QdrantVectorStore(
client=client,
collection_name=collection_name,
embedding=embeddings,
vector_name="text-dense",
sparse_embedding = sparse_embeddings,
sparse_vector_name="text-sparse",
retrieval_mode=RetrievalMode.HYBRID,
)
print("starting embedding")
vector_store.add_documents(docs)
print("vector embeddings done")
@st.cache_resource
def get_local_qdrant(collection_name):
"""once the local qdrant server is created this is used to make the connection to exisitng server"""
qdrant_collections = {}
embeddings = HuggingFaceEmbeddings(
model_kwargs = {'device': device},
encode_kwargs = {'normalize_embeddings': True},
model_name='BAAI/bge-m3')
client = QdrantClient(path="/data/local_qdrant")
sparse_embeddings = FastEmbedSparse(model_name="Qdrant/bm25")
print("Collections in local Qdrant:",client.get_collections())
qdrant_collections[collection_name] = Qdrant(client=client, collection_name=collection_name,
embeddings=embeddings,
)
return qdrant_collections |