File size: 14,233 Bytes
0130713
c2f0c5c
609f977
5a1352d
 
c567921
8fdd4c1
8225c93
cb359de
9d9ace2
53d69f4
 
50fbfdd
f5dac9b
0130713
 
 
3346614
d845358
e4b8dd5
88e2023
 
 
 
9392032
 
 
391fa92
9392032
391fa92
9392032
c567921
5a1352d
5170600
9392032
5a1352d
 
d845358
48484fb
 
 
8fdd4c1
 
 
17d08d8
d845358
8fdd4c1
d845358
 
 
 
 
 
8fdd4c1
043c4b1
 
d845358
 
8fdd4c1
 
043c4b1
8fdd4c1
 
043c4b1
 
8fdd4c1
 
043c4b1
8fdd4c1
043c4b1
8fdd4c1
d845358
8fdd4c1
88e2023
8fdd4c1
17d08d8
d845358
 
5620c68
d845358
6c2d0be
d845358
8fdd4c1
6c2d0be
 
 
 
 
 
 
 
 
 
d845358
6c2d0be
 
 
8fdd4c1
53d69f4
0d83a6b
8fdd4c1
6bbd8f6
53d69f4
 
efd387c
0d83a6b
 
53d69f4
d845358
 
 
 
8fdd4c1
59e8a6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8fdd4c1
 
 
 
 
 
59e8a6b
 
 
8fdd4c1
59e8a6b
 
 
 
 
d9b0f82
 
d6bab54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
077a149
d6bab54
82254d1
 
d6bab54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3fbdca
d6bab54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3fbdca
d6bab54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82254d1
d6bab54
 
529dce6
d6bab54
 
d845358
d6bab54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28e96a5
d6bab54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3fbdca
d6bab54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d845358
7471ef6
c567921
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
import streamlit as st
import pandas as pd
from appStore.prep_data import process_giz_worldwide, remove_duplicates, get_max_end_year
from appStore.prep_utils import create_documents, get_client
from appStore.embed import hybrid_embed_chunks
from appStore.search import hybrid_search
from appStore.region_utils import load_region_data, get_country_name, get_regions
from appStore.tfidf_extraction import extract_top_keywords 
from torch import cuda
import json
from datetime import datetime

# get the device to be used eithe gpu or cpu
device = 'cuda' if cuda.is_available() else 'cpu'


st.set_page_config(page_title="SEARCH IATI",layout='wide')
st.title("GIZ Project Database (PROTOTYPE)")
var = st.text_input("Enter Search Query")

# Load the region lookup CSV
region_lookup_path = "docStore/regions_lookup.csv"
region_df = load_region_data(region_lookup_path)

####################  Create the embeddings collection and save ######################
# the steps below need to be performed only once and then commented out any unnecssary compute over-run
##### First we process and create the chunks for relvant data source
#chunks = process_giz_worldwide()
##### Convert to langchain documents
#temp_doc = create_documents(chunks,'chunks')
##### Embed and store docs, check if collection exist then you need to update the collection
collection_name = "giz_worldwide"
#hybrid_embed_chunks(docs= temp_doc, collection_name = collection_name)

################### Hybrid Search ######################################################
client = get_client()
print(client.get_collections())

# Get the maximum end_year across the entire collection
max_end_year = get_max_end_year(client, collection_name)

# Get all unique sub-regions
_, unique_sub_regions = get_regions(region_df)

# Fetch unique country codes and map to country names
@st.cache_data
def get_country_name_and_region_mapping(_client, collection_name, region_df):
    results = hybrid_search(_client, "", collection_name)
    country_set = set()
    for res in results[0] + results[1]:
        countries = res.payload.get('metadata', {}).get('countries', "[]")
        try:
            country_list = json.loads(countries.replace("'", '"'))
            # Only add codes of length 2
            two_digit_codes = [code.upper() for code in country_list if len(code) == 2]
            country_set.update(two_digit_codes)
        except json.JSONDecodeError:
            pass

    # Create a mapping of {CountryName -> ISO2Code} and {ISO2Code -> SubRegion}
    country_name_to_code = {}
    iso_code_to_sub_region = {}

    for code in country_set:
        name = get_country_name(code, region_df)
        sub_region_row = region_df[region_df['alpha-2'] == code]
        sub_region = sub_region_row['sub-region'].values[0] if not sub_region_row.empty else "Not allocated"
        country_name_to_code[name] = code
        iso_code_to_sub_region[code] = sub_region

    return country_name_to_code, iso_code_to_sub_region

# Get country name and region mappings
client = get_client()
country_name_mapping, iso_code_to_sub_region = get_country_name_and_region_mapping(client, collection_name, region_df)
unique_country_names = sorted(country_name_mapping.keys())  # List of country names

# Layout filters in columns
col1, col2, col3, col4 = st.columns([1, 1, 1, 4])

# Region filter
with col1:
    region_filter = st.selectbox("Region", ["All/Not allocated"] + sorted(unique_sub_regions))  # Display region names

# Dynamically filter countries based on selected region
if region_filter == "All/Not allocated":
    filtered_country_names = unique_country_names  # Show all countries if no region is selected
else:
    filtered_country_names = [
        name for name, code in country_name_mapping.items() if iso_code_to_sub_region.get(code) == region_filter
    ]

# Country filter
with col2:
    country_filter = st.selectbox("Country", ["All/Not allocated"] + filtered_country_names)  # Display filtered country names

# Year range slider
with col3:
    current_year = datetime.now().year
    default_start_year = current_year - 5

    # 3) The max_value is now the actual max end_year from collection
    end_year_range = st.slider(
        "Project End Year",
        min_value=2010,
        max_value=max_end_year,
        value=(default_start_year, max_end_year),
    )

# Checkbox to control whether to show only exact matches
show_exact_matches = st.checkbox("Show only exact matches", value=False)

def filter_results(results, country_filter, region_filter, end_year_range):
    filtered = []
    for r in results:
        metadata = r.payload.get('metadata', {})
        countries = metadata.get('countries', "[]")
        end_year_val = float(metadata.get('end_year', 0))

        # Convert countries to a list
        try:
            c_list = json.loads(countries.replace("'", '"'))
            c_list = [code.upper() for code in c_list if len(code) == 2]
        except json.JSONDecodeError:
            c_list = []

        # Translate selected country name to iso2
        selected_iso_code = country_name_mapping.get(country_filter, None)

        # Check if any country in the metadata matches the selected region
        if region_filter != "All/Not allocated":
            countries_in_region = [code for code in c_list if iso_code_to_sub_region.get(code) == region_filter]
        else:
            countries_in_region = c_list

        # Filtering
        if (
            (country_filter == "All/Not allocated" or selected_iso_code in c_list)
            and (region_filter == "All/Not allocated" or countries_in_region)
            and (end_year_range[0] <= end_year_val <= end_year_range[1])
        ):
            filtered.append(r)
    return filtered

# Run the search 

# 1) Adjust limit so we get more than 15 results
results = hybrid_search(client, var, collection_name, limit=500)  # e.g., 100 or 200

# results is a tuple: (semantic_results, lexical_results)
semantic_all = results[0]
lexical_all = results[1]

# 2) Filter out content < 20 chars (as intermediate fix to problem that e.g. super short paragraphs with few chars get high similarity score)
semantic_all = [
    r for r in semantic_all if len(r.payload["page_content"]) >= 70
]
lexical_all = [
    r for r in lexical_all if len(r.payload["page_content"]) >= 70
]

# 2) Apply a threshold to SEMANTIC results (score >= 0.4)
semantic_thresholded = [r for r in semantic_all if r.score >= 0.4]

# 2) Filter the entire sets
filtered_semantic = filter_results(semantic_thresholded, country_filter, region_filter, end_year_range)
filtered_lexical = filter_results(lexical_all, country_filter, region_filter, end_year_range)

filtered_semantic_no_dupe = remove_duplicates(filtered_semantic)
filtered_lexical_no_dupe = remove_duplicates(filtered_lexical)


# 3) Retrieve top 15 *after* filtering
# Check user preference
if show_exact_matches:
    # 1) Display heading
    st.write(f"Showing **Top 15 Lexical Search results** for query: {var}")

    # 2) Do a simple substring check (case-insensitive)
    #    We'll create a new list lexical_substring_filtered
    query_substring = var.strip().lower()
    lexical_substring_filtered = []
    for r in lexical_all:
        # page_content in lowercase
        page_text_lower = r.payload["page_content"].lower()
        # Keep this result only if the query substring is found
        if query_substring in page_text_lower:
            lexical_substring_filtered.append(r)

    # 3) Now apply your region/country/year filter on that new list
    filtered_lexical = filter_results(
        lexical_substring_filtered, country_filter, region_filter, end_year_range
    )

    # 4) Remove duplicates
    filtered_lexical_no_dupe = remove_duplicates(filtered_lexical)

    # 5) If empty after substring + filters + dedupe, show a custom message
    if not filtered_lexical_no_dupe:
        st.write('No exact matches, consider unchecking "Show only exact matches"')
    else:
        # 6) Display the first 15 matching results
        for res in filtered_lexical_no_dupe[:15]:
            project_name = res.payload['metadata'].get('project_name', 'Project Link')
            url = res.payload['metadata'].get('url', '#')
            st.markdown(f"#### [{project_name}]({url})")

            # Snippet logic (80 words)
            full_text = res.payload['page_content']
            words = full_text.split()
            preview_word_count = 80
            preview_text = " ".join(words[:preview_word_count])
            remainder_text = " ".join(words[preview_word_count:])
            st.write(preview_text + ("..." if remainder_text else ""))

            # Keywords
            top_keywords = extract_top_keywords(full_text, top_n=5)
            if top_keywords:
                st.markdown(f"_{' · '.join(top_keywords)}_")

            # Metadata
            metadata = res.payload.get('metadata', {})
            countries = metadata.get('countries', "[]")
            client_name = metadata.get('client', 'Unknown Client')
            start_year = metadata.get('start_year', None)
            end_year = metadata.get('end_year', None)
            
            try:
                c_list = json.loads(countries.replace("'", '"'))
            except json.JSONDecodeError:
                c_list = []
            
            # Only keep country names if the region lookup (get_country_name) 
            # returns something different than the raw code.
            matched_countries = []
            for code in c_list:
                if len(code) == 2:
                    resolved_name = get_country_name(code.upper(), region_df)
                    # If get_country_name didn't find a match, 
                    # it typically just returns the same code (like "XX"). 
                    # We'll consider "successfully looked up" if 
                    # resolved_name != code.upper().
                    if resolved_name.upper() != code.upper():
                        matched_countries.append(resolved_name)
            
            # Format the year range
            start_year_str = f"{int(round(float(start_year)))}" if start_year else "Unknown"
            end_year_str = f"{int(round(float(end_year)))}" if end_year else "Unknown"
            
            # Build the final string
            if matched_countries:
                # We have at least 1 valid country name
                additional_text = (
                    f"**{', '.join(matched_countries)}**, commissioned by **{client_name}**, "
                    f"**{start_year_str}-{end_year_str}**"
                )
            else:
                # No valid countries found
                additional_text = (
                    f"Commissioned by **{client_name}**, **{start_year_str}-{end_year_str}**"
                )
            
            st.markdown(additional_text)
            st.divider()

else:
    st.write(f"Showing **Top 15 Semantic Search results** for query: {var}")
    
    if not filtered_semantic_no_dupe:
        st.write("No relevant results found.")
    else:
        # Show the top 15 from filtered_semantic
        for res in filtered_semantic_no_dupe[:15]:
            project_name = res.payload['metadata'].get('project_name', 'Project Link')
            url = res.payload['metadata'].get('url', '#')
            st.markdown(f"#### [{project_name}]({url})")

            # Snippet logic
            full_text = res.payload['page_content']
            words = full_text.split()
            preview_word_count = 80
            preview_text = " ".join(words[:preview_word_count])
            remainder_text = " ".join(words[preview_word_count:])
            st.write(preview_text + ("..." if remainder_text else ""))

            # Keywords
            top_keywords = extract_top_keywords(full_text, top_n=5)
            if top_keywords:
                st.markdown(f"_{' · '.join(top_keywords)}_")

            # Metadata
            metadata = res.payload.get('metadata', {})
            countries = metadata.get('countries', "[]")
            client_name = metadata.get('client', 'Unknown Client')
            start_year = metadata.get('start_year', None)
            end_year = metadata.get('end_year', None)
            
            try:
                c_list = json.loads(countries.replace("'", '"'))
            except json.JSONDecodeError:
                c_list = []
            
            # Only keep country names if the region lookup (get_country_name) 
            # returns something different than the raw code.
            matched_countries = []
            for code in c_list:
                if len(code) == 2:
                    resolved_name = get_country_name(code.upper(), region_df)
                    # If get_country_name didn't find a match, 
                    # it typically just returns the same code (like "XX"). 
                    # We'll consider "successfully looked up" if 
                    # resolved_name != code.upper().
                    if resolved_name.upper() != code.upper():
                        matched_countries.append(resolved_name)
            
            # Format the year range
            start_year_str = f"{int(round(float(start_year)))}" if start_year else "Unknown"
            end_year_str = f"{int(round(float(end_year)))}" if end_year else "Unknown"
            
            # Build the final string
            if matched_countries:
                # We have at least 1 valid country name
                additional_text = (
                    f"**{', '.join(matched_countries)}**, commissioned by **{client_name}**, "
                    f"**{start_year_str}-{end_year_str}**"
                )
            else:
                # No valid countries found
                additional_text = (
                    f"Commissioned by **{client_name}**, **{start_year_str}-{end_year_str}**"
                )
            
            st.markdown(additional_text)
            st.divider()


    #  for i in results: 
    #      st.subheader(str(i.metadata['id'])+":"+str(i.metadata['title_main']))
    #      st.caption(f"Status:{str(i.metadata['status'])}, Country:{str(i.metadata['country_name'])}")
    #      st.write(i.page_content)
    #      st.divider()