Spaces:
Sleeping
Sleeping
File size: 14,233 Bytes
0130713 c2f0c5c 609f977 5a1352d c567921 8fdd4c1 8225c93 cb359de 9d9ace2 53d69f4 50fbfdd f5dac9b 0130713 3346614 d845358 e4b8dd5 88e2023 9392032 391fa92 9392032 391fa92 9392032 c567921 5a1352d 5170600 9392032 5a1352d d845358 48484fb 8fdd4c1 17d08d8 d845358 8fdd4c1 d845358 8fdd4c1 043c4b1 d845358 8fdd4c1 043c4b1 8fdd4c1 043c4b1 8fdd4c1 043c4b1 8fdd4c1 043c4b1 8fdd4c1 d845358 8fdd4c1 88e2023 8fdd4c1 17d08d8 d845358 5620c68 d845358 6c2d0be d845358 8fdd4c1 6c2d0be d845358 6c2d0be 8fdd4c1 53d69f4 0d83a6b 8fdd4c1 6bbd8f6 53d69f4 efd387c 0d83a6b 53d69f4 d845358 8fdd4c1 59e8a6b 8fdd4c1 59e8a6b 8fdd4c1 59e8a6b d9b0f82 d6bab54 077a149 d6bab54 82254d1 d6bab54 b3fbdca d6bab54 b3fbdca d6bab54 82254d1 d6bab54 529dce6 d6bab54 d845358 d6bab54 28e96a5 d6bab54 b3fbdca d6bab54 d845358 7471ef6 c567921 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 |
import streamlit as st
import pandas as pd
from appStore.prep_data import process_giz_worldwide, remove_duplicates, get_max_end_year
from appStore.prep_utils import create_documents, get_client
from appStore.embed import hybrid_embed_chunks
from appStore.search import hybrid_search
from appStore.region_utils import load_region_data, get_country_name, get_regions
from appStore.tfidf_extraction import extract_top_keywords
from torch import cuda
import json
from datetime import datetime
# get the device to be used eithe gpu or cpu
device = 'cuda' if cuda.is_available() else 'cpu'
st.set_page_config(page_title="SEARCH IATI",layout='wide')
st.title("GIZ Project Database (PROTOTYPE)")
var = st.text_input("Enter Search Query")
# Load the region lookup CSV
region_lookup_path = "docStore/regions_lookup.csv"
region_df = load_region_data(region_lookup_path)
#################### Create the embeddings collection and save ######################
# the steps below need to be performed only once and then commented out any unnecssary compute over-run
##### First we process and create the chunks for relvant data source
#chunks = process_giz_worldwide()
##### Convert to langchain documents
#temp_doc = create_documents(chunks,'chunks')
##### Embed and store docs, check if collection exist then you need to update the collection
collection_name = "giz_worldwide"
#hybrid_embed_chunks(docs= temp_doc, collection_name = collection_name)
################### Hybrid Search ######################################################
client = get_client()
print(client.get_collections())
# Get the maximum end_year across the entire collection
max_end_year = get_max_end_year(client, collection_name)
# Get all unique sub-regions
_, unique_sub_regions = get_regions(region_df)
# Fetch unique country codes and map to country names
@st.cache_data
def get_country_name_and_region_mapping(_client, collection_name, region_df):
results = hybrid_search(_client, "", collection_name)
country_set = set()
for res in results[0] + results[1]:
countries = res.payload.get('metadata', {}).get('countries', "[]")
try:
country_list = json.loads(countries.replace("'", '"'))
# Only add codes of length 2
two_digit_codes = [code.upper() for code in country_list if len(code) == 2]
country_set.update(two_digit_codes)
except json.JSONDecodeError:
pass
# Create a mapping of {CountryName -> ISO2Code} and {ISO2Code -> SubRegion}
country_name_to_code = {}
iso_code_to_sub_region = {}
for code in country_set:
name = get_country_name(code, region_df)
sub_region_row = region_df[region_df['alpha-2'] == code]
sub_region = sub_region_row['sub-region'].values[0] if not sub_region_row.empty else "Not allocated"
country_name_to_code[name] = code
iso_code_to_sub_region[code] = sub_region
return country_name_to_code, iso_code_to_sub_region
# Get country name and region mappings
client = get_client()
country_name_mapping, iso_code_to_sub_region = get_country_name_and_region_mapping(client, collection_name, region_df)
unique_country_names = sorted(country_name_mapping.keys()) # List of country names
# Layout filters in columns
col1, col2, col3, col4 = st.columns([1, 1, 1, 4])
# Region filter
with col1:
region_filter = st.selectbox("Region", ["All/Not allocated"] + sorted(unique_sub_regions)) # Display region names
# Dynamically filter countries based on selected region
if region_filter == "All/Not allocated":
filtered_country_names = unique_country_names # Show all countries if no region is selected
else:
filtered_country_names = [
name for name, code in country_name_mapping.items() if iso_code_to_sub_region.get(code) == region_filter
]
# Country filter
with col2:
country_filter = st.selectbox("Country", ["All/Not allocated"] + filtered_country_names) # Display filtered country names
# Year range slider
with col3:
current_year = datetime.now().year
default_start_year = current_year - 5
# 3) The max_value is now the actual max end_year from collection
end_year_range = st.slider(
"Project End Year",
min_value=2010,
max_value=max_end_year,
value=(default_start_year, max_end_year),
)
# Checkbox to control whether to show only exact matches
show_exact_matches = st.checkbox("Show only exact matches", value=False)
def filter_results(results, country_filter, region_filter, end_year_range):
filtered = []
for r in results:
metadata = r.payload.get('metadata', {})
countries = metadata.get('countries', "[]")
end_year_val = float(metadata.get('end_year', 0))
# Convert countries to a list
try:
c_list = json.loads(countries.replace("'", '"'))
c_list = [code.upper() for code in c_list if len(code) == 2]
except json.JSONDecodeError:
c_list = []
# Translate selected country name to iso2
selected_iso_code = country_name_mapping.get(country_filter, None)
# Check if any country in the metadata matches the selected region
if region_filter != "All/Not allocated":
countries_in_region = [code for code in c_list if iso_code_to_sub_region.get(code) == region_filter]
else:
countries_in_region = c_list
# Filtering
if (
(country_filter == "All/Not allocated" or selected_iso_code in c_list)
and (region_filter == "All/Not allocated" or countries_in_region)
and (end_year_range[0] <= end_year_val <= end_year_range[1])
):
filtered.append(r)
return filtered
# Run the search
# 1) Adjust limit so we get more than 15 results
results = hybrid_search(client, var, collection_name, limit=500) # e.g., 100 or 200
# results is a tuple: (semantic_results, lexical_results)
semantic_all = results[0]
lexical_all = results[1]
# 2) Filter out content < 20 chars (as intermediate fix to problem that e.g. super short paragraphs with few chars get high similarity score)
semantic_all = [
r for r in semantic_all if len(r.payload["page_content"]) >= 70
]
lexical_all = [
r for r in lexical_all if len(r.payload["page_content"]) >= 70
]
# 2) Apply a threshold to SEMANTIC results (score >= 0.4)
semantic_thresholded = [r for r in semantic_all if r.score >= 0.4]
# 2) Filter the entire sets
filtered_semantic = filter_results(semantic_thresholded, country_filter, region_filter, end_year_range)
filtered_lexical = filter_results(lexical_all, country_filter, region_filter, end_year_range)
filtered_semantic_no_dupe = remove_duplicates(filtered_semantic)
filtered_lexical_no_dupe = remove_duplicates(filtered_lexical)
# 3) Retrieve top 15 *after* filtering
# Check user preference
if show_exact_matches:
# 1) Display heading
st.write(f"Showing **Top 15 Lexical Search results** for query: {var}")
# 2) Do a simple substring check (case-insensitive)
# We'll create a new list lexical_substring_filtered
query_substring = var.strip().lower()
lexical_substring_filtered = []
for r in lexical_all:
# page_content in lowercase
page_text_lower = r.payload["page_content"].lower()
# Keep this result only if the query substring is found
if query_substring in page_text_lower:
lexical_substring_filtered.append(r)
# 3) Now apply your region/country/year filter on that new list
filtered_lexical = filter_results(
lexical_substring_filtered, country_filter, region_filter, end_year_range
)
# 4) Remove duplicates
filtered_lexical_no_dupe = remove_duplicates(filtered_lexical)
# 5) If empty after substring + filters + dedupe, show a custom message
if not filtered_lexical_no_dupe:
st.write('No exact matches, consider unchecking "Show only exact matches"')
else:
# 6) Display the first 15 matching results
for res in filtered_lexical_no_dupe[:15]:
project_name = res.payload['metadata'].get('project_name', 'Project Link')
url = res.payload['metadata'].get('url', '#')
st.markdown(f"#### [{project_name}]({url})")
# Snippet logic (80 words)
full_text = res.payload['page_content']
words = full_text.split()
preview_word_count = 80
preview_text = " ".join(words[:preview_word_count])
remainder_text = " ".join(words[preview_word_count:])
st.write(preview_text + ("..." if remainder_text else ""))
# Keywords
top_keywords = extract_top_keywords(full_text, top_n=5)
if top_keywords:
st.markdown(f"_{' · '.join(top_keywords)}_")
# Metadata
metadata = res.payload.get('metadata', {})
countries = metadata.get('countries', "[]")
client_name = metadata.get('client', 'Unknown Client')
start_year = metadata.get('start_year', None)
end_year = metadata.get('end_year', None)
try:
c_list = json.loads(countries.replace("'", '"'))
except json.JSONDecodeError:
c_list = []
# Only keep country names if the region lookup (get_country_name)
# returns something different than the raw code.
matched_countries = []
for code in c_list:
if len(code) == 2:
resolved_name = get_country_name(code.upper(), region_df)
# If get_country_name didn't find a match,
# it typically just returns the same code (like "XX").
# We'll consider "successfully looked up" if
# resolved_name != code.upper().
if resolved_name.upper() != code.upper():
matched_countries.append(resolved_name)
# Format the year range
start_year_str = f"{int(round(float(start_year)))}" if start_year else "Unknown"
end_year_str = f"{int(round(float(end_year)))}" if end_year else "Unknown"
# Build the final string
if matched_countries:
# We have at least 1 valid country name
additional_text = (
f"**{', '.join(matched_countries)}**, commissioned by **{client_name}**, "
f"**{start_year_str}-{end_year_str}**"
)
else:
# No valid countries found
additional_text = (
f"Commissioned by **{client_name}**, **{start_year_str}-{end_year_str}**"
)
st.markdown(additional_text)
st.divider()
else:
st.write(f"Showing **Top 15 Semantic Search results** for query: {var}")
if not filtered_semantic_no_dupe:
st.write("No relevant results found.")
else:
# Show the top 15 from filtered_semantic
for res in filtered_semantic_no_dupe[:15]:
project_name = res.payload['metadata'].get('project_name', 'Project Link')
url = res.payload['metadata'].get('url', '#')
st.markdown(f"#### [{project_name}]({url})")
# Snippet logic
full_text = res.payload['page_content']
words = full_text.split()
preview_word_count = 80
preview_text = " ".join(words[:preview_word_count])
remainder_text = " ".join(words[preview_word_count:])
st.write(preview_text + ("..." if remainder_text else ""))
# Keywords
top_keywords = extract_top_keywords(full_text, top_n=5)
if top_keywords:
st.markdown(f"_{' · '.join(top_keywords)}_")
# Metadata
metadata = res.payload.get('metadata', {})
countries = metadata.get('countries', "[]")
client_name = metadata.get('client', 'Unknown Client')
start_year = metadata.get('start_year', None)
end_year = metadata.get('end_year', None)
try:
c_list = json.loads(countries.replace("'", '"'))
except json.JSONDecodeError:
c_list = []
# Only keep country names if the region lookup (get_country_name)
# returns something different than the raw code.
matched_countries = []
for code in c_list:
if len(code) == 2:
resolved_name = get_country_name(code.upper(), region_df)
# If get_country_name didn't find a match,
# it typically just returns the same code (like "XX").
# We'll consider "successfully looked up" if
# resolved_name != code.upper().
if resolved_name.upper() != code.upper():
matched_countries.append(resolved_name)
# Format the year range
start_year_str = f"{int(round(float(start_year)))}" if start_year else "Unknown"
end_year_str = f"{int(round(float(end_year)))}" if end_year else "Unknown"
# Build the final string
if matched_countries:
# We have at least 1 valid country name
additional_text = (
f"**{', '.join(matched_countries)}**, commissioned by **{client_name}**, "
f"**{start_year_str}-{end_year_str}**"
)
else:
# No valid countries found
additional_text = (
f"Commissioned by **{client_name}**, **{start_year_str}-{end_year_str}**"
)
st.markdown(additional_text)
st.divider()
# for i in results:
# st.subheader(str(i.metadata['id'])+":"+str(i.metadata['title_main']))
# st.caption(f"Status:{str(i.metadata['status'])}, Country:{str(i.metadata['country_name'])}")
# st.write(i.page_content)
# st.divider()
|