File size: 10,476 Bytes
0130713
c2f0c5c
82254d1
5a1352d
 
c567921
8fdd4c1
8225c93
cb359de
9d9ace2
53d69f4
 
50fbfdd
f5dac9b
0130713
 
 
d845358
 
e4b8dd5
88e2023
 
 
 
9392032
 
 
391fa92
9392032
391fa92
9392032
c567921
5a1352d
5170600
9392032
5a1352d
 
d845358
8fdd4c1
 
 
17d08d8
d845358
8fdd4c1
d845358
 
 
 
 
 
8fdd4c1
043c4b1
 
d845358
 
8fdd4c1
 
043c4b1
8fdd4c1
 
043c4b1
 
8fdd4c1
 
043c4b1
8fdd4c1
043c4b1
8fdd4c1
d845358
8fdd4c1
88e2023
8fdd4c1
17d08d8
d845358
 
5620c68
d845358
6c2d0be
d845358
8fdd4c1
6c2d0be
 
 
 
 
 
 
 
 
 
d845358
6c2d0be
 
 
8fdd4c1
53d69f4
 
8fdd4c1
53d69f4
 
 
 
 
 
d845358
 
 
eac610a
d845358
8fdd4c1
59e8a6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8fdd4c1
 
 
 
 
 
59e8a6b
 
 
8fdd4c1
59e8a6b
 
 
 
 
7471ef6
59e8a6b
eac610a
d845358
59e8a6b
 
 
d845358
59e8a6b
8fdd4c1
 
077a149
82254d1
 
 
 
59e8a6b
 
d845358
 
59e8a6b
82254d1
d845358
4ec0c95
 
59e8a6b
 
8ad1360
d3da02b
59e8a6b
d3da02b
 
 
59e8a6b
 
8225c93
 
59e8a6b
 
 
077a149
 
59e8a6b
077a149
59e8a6b
077a149
 
59e8a6b
 
077a149
59e8a6b
077a149
59e8a6b
 
077a149
59e8a6b
 
 
53d69f4
d845358
 
 
59e8a6b
82254d1
d845358
4ec0c95
 
59e8a6b
 
8ad1360
d3da02b
59e8a6b
d3da02b
 
 
59e8a6b
 
8225c93
 
59e8a6b
 
 
077a149
 
59e8a6b
077a149
59e8a6b
077a149
 
59e8a6b
 
077a149
59e8a6b
077a149
59e8a6b
 
077a149
59e8a6b
 
 
53d69f4
d845358
 
7471ef6
c567921
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import streamlit as st
import pandas as pd
from appStore.prep_data import process_giz_worldwide, remove_duplicates
from appStore.prep_utils import create_documents, get_client
from appStore.embed import hybrid_embed_chunks
from appStore.search import hybrid_search
from appStore.region_utils import load_region_data, get_country_name, get_regions
from appStore.tfidf_extraction import extract_top_keywords 
from torch import cuda
import json
from datetime import datetime

# get the device to be used eithe gpu or cpu
device = 'cuda' if cuda.is_available() else 'cpu'


st.set_page_config(page_title="SEARCH IATI",layout='wide')
st.title("GIZ Project Database")
var = st.text_input("Enter Search Query")

# Load the region lookup CSV
region_lookup_path = "docStore/regions_lookup.csv"
region_df = load_region_data(region_lookup_path)

####################  Create the embeddings collection and save ######################
# the steps below need to be performed only once and then commented out any unnecssary compute over-run
##### First we process and create the chunks for relvant data source
#chunks = process_giz_worldwide()
##### Convert to langchain documents
#temp_doc = create_documents(chunks,'chunks')
##### Embed and store docs, check if collection exist then you need to update the collection
collection_name = "giz_worldwide"
#hybrid_embed_chunks(docs= temp_doc, collection_name = collection_name)

################### Hybrid Search ######################################################
client = get_client()
print(client.get_collections())

# Get all unique sub-regions
_, unique_sub_regions = get_regions(region_df)

# Fetch unique country codes and map to country names
@st.cache_data
def get_country_name_and_region_mapping(_client, collection_name, region_df):
    results = hybrid_search(_client, "", collection_name)
    country_set = set()
    for res in results[0] + results[1]:
        countries = res.payload.get('metadata', {}).get('countries', "[]")
        try:
            country_list = json.loads(countries.replace("'", '"'))
            # Only add codes of length 2
            two_digit_codes = [code.upper() for code in country_list if len(code) == 2]
            country_set.update(two_digit_codes)
        except json.JSONDecodeError:
            pass

    # Create a mapping of {CountryName -> ISO2Code} and {ISO2Code -> SubRegion}
    country_name_to_code = {}
    iso_code_to_sub_region = {}

    for code in country_set:
        name = get_country_name(code, region_df)
        sub_region_row = region_df[region_df['alpha-2'] == code]
        sub_region = sub_region_row['sub-region'].values[0] if not sub_region_row.empty else "Not allocated"
        country_name_to_code[name] = code
        iso_code_to_sub_region[code] = sub_region

    return country_name_to_code, iso_code_to_sub_region

# Get country name and region mappings
client = get_client()
country_name_mapping, iso_code_to_sub_region = get_country_name_and_region_mapping(client, collection_name, region_df)
unique_country_names = sorted(country_name_mapping.keys())  # List of country names

# Layout filters in columns
col1, col2, col3, col4 = st.columns([1, 1, 1, 4])

# Region filter
with col1:
    region_filter = st.selectbox("Region", ["All/Not allocated"] + sorted(unique_sub_regions))  # Display region names

# Dynamically filter countries based on selected region
if region_filter == "All/Not allocated":
    filtered_country_names = unique_country_names  # Show all countries if no region is selected
else:
    filtered_country_names = [
        name for name, code in country_name_mapping.items() if iso_code_to_sub_region.get(code) == region_filter
    ]

# Country filter
with col2:
    country_filter = st.selectbox("Country", ["All/Not allocated"] + filtered_country_names)  # Display filtered country names

# Year range slider
with col3:
    current_year = datetime.now().year
    default_start_year = current_year - 5  # Default to 5 years ago

    end_year_range = st.slider(
        "Project End Year",
        min_value=2010,
        max_value=2030,
        value=(default_start_year, current_year)
    )

# Checkbox to control whether to show only exact matches
show_exact_matches = st.checkbox("Show only exact matches", value=False)
button = st.button("Refresh Search")

def filter_results(results, country_filter, region_filter, end_year_range):
    filtered = []
    for r in results:
        metadata = r.payload.get('metadata', {})
        countries = metadata.get('countries', "[]")
        end_year_val = float(metadata.get('end_year', 0))

        # Convert countries to a list
        try:
            c_list = json.loads(countries.replace("'", '"'))
            c_list = [code.upper() for code in c_list if len(code) == 2]
        except json.JSONDecodeError:
            c_list = []

        # Translate selected country name to iso2
        selected_iso_code = country_name_mapping.get(country_filter, None)

        # Check if any country in the metadata matches the selected region
        if region_filter != "All/Not allocated":
            countries_in_region = [code for code in c_list if iso_code_to_sub_region.get(code) == region_filter]
        else:
            countries_in_region = c_list

        # Filtering
        if (
            (country_filter == "All/Not allocated" or selected_iso_code in c_list)
            and (region_filter == "All/Not allocated" or countries_in_region)
            and (end_year_range[0] <= end_year_val <= end_year_range[1])
        ):
            filtered.append(r)
    return filtered

if button:
    # 1) Use a bigger limit so we get more than 10 results
    results = hybrid_search(client, var, collection_name, limit=500)  # e.g., 100 or 200

    # results is a tuple: (semantic_results, lexical_results)
    semantic_all = results[0]
    lexical_all = results[1]

    # 2) Filter the entire sets
    filtered_semantic = filter_results(semantic_all, country_filter, region_filter, end_year_range)
    filtered_lexical = filter_results(lexical_all, country_filter, region_filter, end_year_range)

    filtered_semantic_no_dupe = remove_duplicates(filtered_semantic)
    filtered_lexical_no_dupe = remove_duplicates(filtered_lexical)


    # 3) Now we take the top 10 *after* filtering
    # Check user preference
    if show_exact_matches:
        st.write(f"Showing **Top 10 Lexical Search results** for query: {var}")
        # Show the top 10 from filtered_lexical
        for res in filtered_lexical_no_dupe[:10]:
            project_name = res.payload['metadata'].get('project_name', 'Project Link')
            url = res.payload['metadata'].get('url', '#')
            st.markdown(f"#### [{project_name}]({url})")

            # Snippet logic (80 words)
            full_text = res.payload['page_content']
            words = full_text.split()
            preview_word_count = 80
            preview_text = " ".join(words[:preview_word_count])
            remainder_text = " ".join(words[preview_word_count:])
            st.write(preview_text + ("..." if remainder_text else ""))

            # Keywords
            top_keywords = extract_top_keywords(full_text, top_n=5)
            if top_keywords:
                st.markdown(f"_{' · '.join(top_keywords)}_")

            # Metadata
            metadata = res.payload.get('metadata', {})
            countries = metadata.get('countries', "[]")
            client_name = metadata.get('client', 'Unknown Client')
            start_year = metadata.get('start_year', None)
            end_year_ = metadata.get('end_year', None)

            try:
                c_list = json.loads(countries.replace("'", '"'))
                country_names = [get_country_name(code.upper(), region_df) for code in c_list if len(code) == 2]
            except json.JSONDecodeError:
                country_names = []

            start_year_str = f"{int(round(float(start_year)))}" if start_year else "Unknown"
            end_year_str = f"{int(round(float(end_year_)))}" if end_year_ else "Unknown"

            additional_text = (
                f"**{', '.join(country_names)}**, commissioned by **{client_name}**, **{start_year_str}-{end_year_str}**"
            )
            st.markdown(additional_text)
            st.divider()
    else:
        st.write(f"Showing **Top 10 Semantic Search results** for query: {var}")
        # Show the top 10 from filtered_semantic
        for res in filtered_semantic_no_dupe[:10]:
            project_name = res.payload['metadata'].get('project_name', 'Project Link')
            url = res.payload['metadata'].get('url', '#')
            st.markdown(f"#### [{project_name}]({url})")

            # Snippet logic
            full_text = res.payload['page_content']
            words = full_text.split()
            preview_word_count = 80
            preview_text = " ".join(words[:preview_word_count])
            remainder_text = " ".join(words[preview_word_count:])
            st.write(preview_text + ("..." if remainder_text else ""))

            # Keywords
            top_keywords = extract_top_keywords(full_text, top_n=5)
            if top_keywords:
                st.markdown(f"_{' · '.join(top_keywords)}_")

            # Metadata
            metadata = res.payload.get('metadata', {})
            countries = metadata.get('countries', "[]")
            client_name = metadata.get('client', 'Unknown Client')
            start_year = metadata.get('start_year', None)
            end_year_ = metadata.get('end_year', None)

            try:
                c_list = json.loads(countries.replace("'", '"'))
                country_names = [get_country_name(code.upper(), region_df) for code in c_list if len(code) == 2]
            except json.JSONDecodeError:
                country_names = []

            start_year_str = f"{int(round(float(start_year)))}" if start_year else "Unknown"
            end_year_str = f"{int(round(float(end_year_)))}" if end_year_ else "Unknown"

            additional_text = (
                f"**{', '.join(country_names)}**, commissioned by **{client_name}**, **{start_year_str}-{end_year_str}**"
            )
            st.markdown(additional_text)
            st.divider()


    #  for i in results: 
    #      st.subheader(str(i.metadata['id'])+":"+str(i.metadata['title_main']))
    #      st.caption(f"Status:{str(i.metadata['status'])}, Country:{str(i.metadata['country_name'])}")
    #      st.write(i.page_content)
    #      st.divider()