Spaces:
Sleeping
Sleeping
File size: 5,436 Bytes
0130713 c2f0c5c e44062d 5a1352d c567921 88e2023 cb359de 9d9ace2 50fbfdd f5dac9b 0130713 d845358 e4b8dd5 88e2023 9392032 391fa92 9392032 391fa92 9392032 c567921 5a1352d 5170600 9392032 5a1352d d845358 17d08d8 d845358 17d08d8 d845358 5c71cde d845358 88e2023 17d08d8 d845358 17d08d8 88e2023 17d08d8 d845358 4ec0c95 d845358 17d08d8 d845358 4ec0c95 d845358 17d08d8 7471ef6 3fe1fb4 d845358 5c71cde d845358 5c71cde d845358 5c71cde 17d08d8 5c71cde d845358 17d08d8 d845358 4ec0c95 d845358 4ec0c95 d845358 4ec0c95 d845358 4ec0c95 d845358 7471ef6 c567921 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
import streamlit as st
import pandas as pd
from appStore.prep_data import process_giz_worldwide
from appStore.prep_utils import create_documents, get_client
from appStore.embed import hybrid_embed_chunks
from appStore.search import hybrid_search
from appStore.region_utils import load_region_data, get_country_name
from torch import cuda
import json
# get the device to be used eithe gpu or cpu
device = 'cuda' if cuda.is_available() else 'cpu'
st.set_page_config(page_title="SEARCH IATI",layout='wide')
st.title("GIZ Project Database")
var = st.text_input("Enter Search Query")
# Load the region lookup CSV
region_lookup_path = "docStore/regions_lookup.csv"
region_df = load_region_data(region_lookup_path)
#################### Create the embeddings collection and save ######################
# the steps below need to be performed only once and then commented out any unnecssary compute over-run
##### First we process and create the chunks for relvant data source
#chunks = process_giz_worldwide()
##### Convert to langchain documents
#temp_doc = create_documents(chunks,'chunks')
##### Embed and store docs, check if collection exist then you need to update the collection
collection_name = "giz_worldwide"
#hybrid_embed_chunks(docs= temp_doc, collection_name = collection_name)
################### Hybrid Search ######################################################
client = get_client()
print(client.get_collections())
# Fetch unique country codes and map to country names
@st.cache_data
def get_country_name_mapping(_client, collection_name, region_df):
results = hybrid_search(_client, "", collection_name)
country_set = set()
for res in results[0] + results[1]:
countries = res.payload.get('metadata', {}).get('countries', "[]")
try:
country_list = json.loads(countries.replace("'", '"'))
country_set.update([code.upper() for code in country_list]) # Normalize to uppercase
except json.JSONDecodeError:
pass
# Create a mapping of country names to ISO codes
country_name_to_code = {get_country_name(code, region_df): code for code in country_set}
return country_name_to_code
# Get country name mapping
client = get_client()
country_name_mapping = get_country_name_mapping(client, collection_name, region_df)
unique_country_names = sorted(country_name_mapping.keys()) # List of country names
# Layout filters in columns
col1, col2, col3 = st.columns([1, 1, 4])
with col1:
country_filter = st.selectbox("Country", ["All"] + unique_country_names) # Display country names
with col2:
end_year_range = st.slider("Project End Year", min_value=2010, max_value=2030, value=(2010, 2030))
# Checkbox to control whether to show only exact matches
show_exact_matches = st.checkbox("Show only exact matches", value=False)
button = st.button("Search")
if button:
results = hybrid_search(client, var, collection_name)
def filter_results(results, country_filter, end_year_range):
filtered = []
for res in results:
metadata = res.payload.get('metadata', {})
countries = metadata.get('countries', "[]")
end_year = float(metadata.get('end_year', 0))
# Process countries string to a list
try:
country_list = json.loads(countries.replace("'", '"'))
country_list = [code.upper() for code in country_list] # Convert to uppercase
except json.JSONDecodeError:
country_list = []
# Translate selected country name back to ISO code
selected_iso_code = country_name_mapping.get(country_filter, None)
# Apply country and year filters
if (country_filter == "All" or selected_iso_code in country_list) and (end_year_range[0] <= end_year <= end_year_range[1]):
filtered.append(res)
return filtered
# Check user preference for exact matches
if show_exact_matches:
st.write(f"Showing **Top 10 Lexical Search results** for query: {var}")
lexical_results = results[1] # Lexical results are in index 1
filtered_lexical_results = filter_results(lexical_results, country_filter, end_year_range)
for res in filtered_lexical_results[:10]:
project_name = res.payload['metadata'].get('project_name', 'Project Link')
url = res.payload['metadata'].get('url', '#')
st.markdown(f"#### [{project_name}]({url})")
st.write(res.payload['page_content'])
st.divider()
else:
st.write(f"Showing **Top 10 Semantic Search results** for query: {var}")
semantic_results = results[0] # Semantic results are in index 0
filtered_semantic_results = filter_results(semantic_results, country_filter, end_year_range)
for res in filtered_semantic_results[:10]:
project_name = res.payload['metadata'].get('project_name', 'Project Link')
url = res.payload['metadata'].get('url', '#')
st.markdown(f"#### [{project_name}]({url})")
st.write(res.payload['page_content'])
st.divider()
# for i in results:
# st.subheader(str(i.metadata['id'])+":"+str(i.metadata['title_main']))
# st.caption(f"Status:{str(i.metadata['status'])}, Country:{str(i.metadata['country_name'])}")
# st.write(i.page_content)
# st.divider()
|