Jan Mühlnikel
test
f3a1940
raw
history blame
902 Bytes
import pandas as pd
import numpy as np
def find_similar(p_index, similarity_matrix, filtered_df, top_x):
# filter out just projects from filtered df
filtered_indices = filtered_df.index.tolist()
index_position_mapping = {position: index for position, index in enumerate(filtered_indices)}
filtered_column_sim_matrix = similarity_matrix[:, filtered_indices]
# filter out the row of the selected poject
project_row = filtered_column_sim_matrix[p_index]
sorted_indices = np.argsort(project_row)
top_10_indices_descending = sorted_indices[-10:][::-1]
#top_10_original_indices = [index_position_mapping[position] for position in top_10_indices_descending]
top_10_values_descending = project_row[top_10_indices_descending]
result_df = filtered_df.iloc[top_10_indices_descending]
result_df["similarity"] = top_10_values_descending
return result_df