import pandas as pd import numpy as np def find_similar(p_index, similarity_matrix, filtered_df, top_x): # filter out just projects from filtered df filtered_indices = filtered_df.index.tolist() index_position_mapping = {position: index for position, index in enumerate(filtered_indices)} filtered_column_sim_matrix = similarity_matrix[:, filtered_indices] # filter out the row of the selected poject project_row = filtered_column_sim_matrix[p_index] sorted_indices = np.argsort(project_row) top_10_indices_descending = sorted_indices[-10:][::-1] #top_10_original_indices = [index_position_mapping[position] for position in top_10_indices_descending] top_10_values_descending = project_row[top_10_indices_descending] result_df = filtered_df.iloc[top_10_indices_descending] result_df["similarity"] = top_10_values_descending return result_df