Jan Mühlnikel
test
6f41b63
raw
history blame
673 Bytes
import pandas as pd
import numpy as np
def find_similar(p_index, similarity_matrix, filtered_df, top_x):
selected_row = similarity_matrix[p_index]
filtered_indices = filtered_df.index.tolist()
print(filtered_indices)
index_position_mapping = {index: position for position, index in enumerate(filtered_indices)}
print(index_position_mapping)
#filtered_column_matrix = similarity_matrix[:, filtered_indices]
#top_indexes = np.argsort(selected_row)[-top_x:][::-1]
#top_values = selected_row[top_indexes]
#top_projects_df = projects_df.iloc[top_indexes]
#top_projects_df["similarity"] = top_values
return "top_projects_df"