import pandas as pd import numpy as np def find_similar(p_index, similarity_matrix, filtered_df, top_x): selected_row = similarity_matrix[p_index] filtered_indices = filtered_df.index.tolist() print(filtered_indices) index_position_mapping = {index: position for position, index in enumerate(filtered_indices)} print(index_position_mapping) #filtered_column_matrix = similarity_matrix[:, filtered_indices] #top_indexes = np.argsort(selected_row)[-top_x:][::-1] #top_values = selected_row[top_indexes] #top_projects_df = projects_df.iloc[top_indexes] #top_projects_df["similarity"] = top_values return "top_projects_df"